File size: 1,599 Bytes
73b6b3a
4d77746
73b6b3a
 
 
4d77746
73b6b3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
  example_title: Hello world
  group: Python
---

This model is randomly initialized, using the config from [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) but with smaller size.

Codes:
```python
from optimum.intel.openvino import OVModelForCausalLM
from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os

model_id = 'mistralai/Mixtral-8x7B-v0.1'
save_path = '/tmp/yujiepan/mixtral-8xtiny-random'
repo_id = 'yujiepan/mixtral-8xtiny-random'

config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_experts_per_tok = 2
config.num_hidden_layers = 2
config.num_key_value_heads = 2
config.num_local_experts = 8
print(config)

tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)

model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.float16)
model = model.half()

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))

model.save_pretrained(save_path)

# ovmodel = OVModelForCausalLM.from_pretrained(save_path, export=True)
# ovmodel = ovmodel.half()
# ovmodel.save_pretrained(save_path)

os.system(f'ls -alh /tmp/yujiepan/mixtral-8xtiny-random')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
```