Create generate_white.py
Browse files- generate_white.py +41 -0
generate_white.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
|
6 |
+
def test_lora(lcm_speedup=False):
|
7 |
+
pipe = DiffusionPipeline.from_pretrained("/mnt/workspace/Project/VideoGen/ckpt/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False)
|
8 |
+
pipe.to("cuda")
|
9 |
+
|
10 |
+
lora_path = "/mnt/workspace/Project/VideoGen/TrainT2V/diffusers/examples/text_to_image/results"
|
11 |
+
pipe.load_lora_weights(pretrained_model_name_or_path_or_dict=lora_path, weight_name="white_100epoch_lora.safetensors", adapter_name="pattern")
|
12 |
+
if lcm_speedup:
|
13 |
+
pipe.load_lora_weights(pretrained_model_name_or_path_or_dict=lora_path, weight_name="lcm_lora.safetensors", adapter_name="lcm")
|
14 |
+
pipe.set_adapters(["artifacts", "lcm"], adapter_weights=[1.0, 1.0])
|
15 |
+
|
16 |
+
prompts = [
|
17 |
+
"A central pure white artifact with a fluid, swirling form, resembling a twisted cloth. The artifact is highly detailed with intricate textures that catch the light, creating a sense of depth and realism. Set against a soft, out-of-focus black background that transitions from light to dark, the artifact stands out prominently."
|
18 |
+
]
|
19 |
+
|
20 |
+
# 设置生成参数
|
21 |
+
if lcm_speedup:
|
22 |
+
num_inference_steps = 8
|
23 |
+
guidance_scale = 2
|
24 |
+
else:
|
25 |
+
num_inference_steps = 30
|
26 |
+
guidance_scale = 7.5
|
27 |
+
|
28 |
+
num_samples_per_prompt = 10 # 生成10张图片
|
29 |
+
|
30 |
+
# 确保images文件夹存在
|
31 |
+
if not os.path.exists("images_result"):
|
32 |
+
os.makedirs("images_result")
|
33 |
+
|
34 |
+
# 为每个 prompt 生成 num_samples_per_prompt 张图片
|
35 |
+
for i, prompt in enumerate(prompts):
|
36 |
+
for j in range(num_samples_per_prompt):
|
37 |
+
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
|
38 |
+
image.save(f"images_result/{i}_{j}.png") # 保存图片
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
test_lora()
|