respark / epoch2 /sparktts /models /audio_tokenizer.py
yueyulin's picture
Upload folder using huggingface_hub
b3c4c5d verified
# Copyright (c) 2025 SparkAudio
# 2025 Xinsheng Wang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from pathlib import Path
from typing import Any, Dict, Tuple, Optional, Union
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
from sparktts.utils.file import load_config
from sparktts.utils.audio import load_audio
from sparktts.models.bicodec import BiCodec
class BiCodecTokenizer:
"""BiCodec tokenizer for handling audio input and tokenization."""
def __init__(self, model_dir: Path, device: torch.device = None, **kwargs):
super().__init__()
"""
Args:
model_dir: Path to the model directory.
device: Device to run the model on (default is GPU if available).
"""
self.device = device
self.model_dir = model_dir
self.config = load_config(f"{model_dir}/config.yaml")
self._initialize_model()
def _initialize_model(self):
"""Load and initialize the BiCodec model and Wav2Vec2 feature extractor."""
self.model = BiCodec.load_from_checkpoint(f"{self.model_dir}/BiCodec").to(
self.device
)
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(
f"{self.model_dir}/wav2vec2-large-xlsr-53"
)
self.feature_extractor = Wav2Vec2Model.from_pretrained(
f"{self.model_dir}/wav2vec2-large-xlsr-53"
).to(self.device)
self.feature_extractor.config.output_hidden_states = True
def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
"""Get reference audio clip for speaker embedding."""
ref_segment_length = (
int(self.config["sample_rate"] * self.config["ref_segment_duration"])
// self.config["latent_hop_length"]
* self.config["latent_hop_length"]
)
wav_length = len(wav)
if ref_segment_length > wav_length:
# Repeat and truncate to handle insufficient length
wav = np.tile(wav, ref_segment_length // wav_length + 1)
return wav[:ref_segment_length]
def process_audio(self, wav_path: Optional[Union[Path, np.ndarray]]) -> Tuple[np.ndarray, torch.Tensor]:
"""load auido and get reference audio from wav path"""
if isinstance(wav_path, Path):
wav = load_audio(
wav_path,
sampling_rate=self.config["sample_rate"],
volume_normalize=self.config["volume_normalize"],
)
elif isinstance(wav_path, np.ndarray):
wav = wav_path
else:
raise ValueError(f"Unsupported audio type: {type(wav_path)}")
wav_ref = self.get_ref_clip(wav)
wav_ref = torch.from_numpy(wav_ref).unsqueeze(0).float()
return wav, wav_ref
def extract_wav2vec2_features(self, wavs: torch.Tensor) -> torch.Tensor:
"""extract wav2vec2 features"""
inputs = self.processor(
wavs,
sampling_rate=16000,
return_tensors="pt",
padding=True,
output_hidden_states=True,
).input_values.to(self.feature_extractor.dtype)
feat = self.feature_extractor(inputs.to(self.feature_extractor.device))
feats_mix = (
feat.hidden_states[11] + feat.hidden_states[14] + feat.hidden_states[16]
) / 3
return feats_mix
def tokenize_batch(self, batch: Dict[str, Any]) -> torch.Tensor:
"""tokenize the batch of audio
Args:
batch:
wavs (List[np.ndarray]): batch of audio
ref_wavs (torch.Tensor): reference audio. shape: (batch_size, seq_len)
Returns:
semantic_tokens: semantic tokens. shape: (batch_size, seq_len, latent_dim)
global_tokens: global tokens. shape: (batch_size, seq_len, global_dim)
"""
feats = self.extract_wav2vec2_features(batch["wav"])
batch["feat"] = feats
semantic_tokens, global_tokens = self.model.tokenize(batch)
return global_tokens, semantic_tokens
def tokenize(self, audio_path: str) -> Tuple[torch.Tensor, torch.Tensor]:
"""tokenize the audio"""
wav, ref_wav = self.process_audio(audio_path)
feat = self.extract_wav2vec2_features(wav)
batch = {
"wav": torch.from_numpy(wav).unsqueeze(0).float().to(self.device),
"ref_wav": ref_wav.to(self.device),
"feat": feat.to(self.device),
}
semantic_tokens, global_tokens = self.model.tokenize(batch)
return global_tokens, semantic_tokens
def detokenize(
self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor
) -> np.array:
"""detokenize the tokens to waveform
Args:
global_tokens: global tokens. shape: (batch_size, global_dim)
semantic_tokens: semantic tokens. shape: (batch_size, latent_dim)
Returns:
wav_rec: waveform. shape: (batch_size, seq_len) for batch or (seq_len,) for single
"""
global_tokens = global_tokens.unsqueeze(1)
wav_rec = self.model.detokenize(semantic_tokens, global_tokens)
return wav_rec.detach().squeeze().cpu().numpy()
# test
if __name__ == "__main__":
import soundfile as sf
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = BiCodecTokenizer(
model_dir="pretrained_models/Spark-TTS-0.5B",
device=device,
)
wav_path = "example/prompt_audio.wav"
global_tokens, semantic_tokens = tokenizer.tokenize(wav_path)
wav_rec = tokenizer.detokenize(global_tokens.squeeze(0), semantic_tokens)
sf.write("example/prompt_recon.wav", wav_rec, 16000)