File size: 7,728 Bytes
ee3b868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import numpy as np
import torch
def generate_embeddings(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None):
"""
为 Spark LLM 生成预测所需的输入嵌入
Args:
model: Spark LLM 模型
tokenizer: 文本分词器
text: 要生成语音的文本
bicodec: BiCodecTokenizer 实例
prompt_text: 提示文本(可选)
prompt_audio: 提示音频数组(可选)
Returns:
dict: 包含 input_embs 的字典,用于模型预测
"""
device = next(model.parameters()).device
# 1. 处理提示音频,提取 global_tokens 和 semantic_tokens
if prompt_audio is not None:
# 确保音频数据是 float32 类型
audio_data = np.array(prompt_audio, dtype=np.float32)
target_sample_rate = bicodec.config['sample_rate']
# 检查是否需要重采样
# 注意:这里假设 prompt_audio 已经是从 soundfile 加载的,采样率信息在外部处理
# BiCodecTokenizer 期望 16kHz 采样率的音频
print(f"BiCodecTokenizer 期望的采样率: {target_sample_rate}Hz")
print(f"音频数据形状: {audio_data.shape}")
# 使用 BiCodec 提取 tokens (返回顺序: global_tokens, semantic_tokens)
global_tokens, semantic_tokens = bicodec.tokenize(audio_data)
global_tokens = global_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
semantic_tokens = semantic_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
else:
global_tokens = []
semantic_tokens = []
# 2. 处理文本
if prompt_text is not None:
# 连接提示文本和目标文本
full_text = prompt_text + text
# 初始的 semantic tokens 等于 prompt_audio 提取的 semantic tokens
initial_semantic_tokens = semantic_tokens.copy()
else:
full_text = text
initial_semantic_tokens = []
# 3. 获取文本 tokens
text_tokens = tokenizer.encode(full_text, add_special_tokens=False)
# 4. 转换为张量
text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
semantic_tokens_tensor = torch.tensor(initial_semantic_tokens, dtype=torch.long, device=device)
# 5. 获取嵌入
text_embs = model.text_embedder(text_tokens_tensor)
global_embs = model.global_embedder(global_tokens_tensor)
semantic_embs = model.model.embeddings(semantic_tokens_tensor)
# 6. 获取特殊标记嵌入
tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
# 7. 连接嵌入
input_embs = torch.cat([
tag_2_emb,
text_embs,
tag_0_emb,
global_embs,
tag_1_emb,
semantic_embs
], dim=0)
# 8. 添加批次维度
input_embs = input_embs.unsqueeze(0) # [1, seq_len, hidden_size]
return {
"input_embs": input_embs,
"global_tokens": global_tokens_tensor,
}
def generate_embeddings_batch(model, tokenizer, texts, bicodec, prompt_text=None, prompt_audio=None):
"""
为 Spark LLM 批量生成预测所需的输入嵌入,支持多个文本的并行处理
Args:
model: Spark LLM 模型
tokenizer: 文本分词器
texts: 要生成语音的文本列表
bicodec: BiCodecTokenizer 实例
prompt_text: 提示文本(可选)
prompt_audio: 提示音频数组(可选)
Returns:
tuple: (embeddings_dict, attention_mask) 包含批量 input_embs 的字典和注意力掩码
"""
device = next(model.parameters()).device
dtype = next(model.parameters()).dtype
batch_size = len(texts)
# 1. 处理提示音频,提取 global_tokens 和 semantic_tokens
if prompt_audio is not None:
# 确保音频数据是 float32 类型
audio_data = np.array(prompt_audio, dtype=np.float32)
target_sample_rate = bicodec.config['sample_rate']
print(f"BiCodecTokenizer 期望的采样率: {target_sample_rate}Hz")
print(f"音频数据形状: {audio_data.shape}")
# 使用 BiCodec 提取 tokens (返回顺序: global_tokens, semantic_tokens)
global_tokens, semantic_tokens = bicodec.tokenize(audio_data)
global_tokens = global_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
semantic_tokens = semantic_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
else:
global_tokens = []
semantic_tokens = []
# 2. 处理所有文本,获取每个样本的嵌入组件
all_input_embs = []
all_attention_masks = []
for text in texts:
# 处理单个文本
if prompt_text is not None:
full_text = prompt_text + text
initial_semantic_tokens = semantic_tokens.copy()
else:
full_text = text
initial_semantic_tokens = []
# 获取文本 tokens
text_tokens = tokenizer.encode(full_text, add_special_tokens=False)
# 转换为张量
text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
semantic_tokens_tensor = torch.tensor(initial_semantic_tokens, dtype=torch.long, device=device)
# 获取嵌入
text_embs = model.text_embedder(text_tokens_tensor)
global_embs = model.global_embedder(global_tokens_tensor)
semantic_embs = model.model.embeddings(semantic_tokens_tensor)
# 获取特殊标记嵌入
tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
# 连接嵌入
input_embs = torch.cat([
tag_2_emb,
text_embs,
tag_0_emb,
global_embs,
tag_1_emb,
semantic_embs
], dim=0) # [seq_len, hidden_size]
all_input_embs.append(input_embs)
all_attention_masks.append(torch.ones(input_embs.shape[0], dtype=torch.long, device=device))
# 3. 找到最大序列长度
max_seq_len = max(emb.shape[0] for emb in all_input_embs)
hidden_size = all_input_embs[0].shape[1]
# 4. 创建批量张量,使用 left padding 和零填充
batch_input_embs = torch.zeros(batch_size, max_seq_len, hidden_size, device=device,dtype=dtype)
batch_attention_mask = torch.zeros(batch_size, max_seq_len, dtype=torch.long, device=device)
for i, (input_embs, attention_mask) in enumerate(zip(all_input_embs, all_attention_masks)):
seq_len = input_embs.shape[0]
# Left padding: 将序列放在右侧,左侧填充零
batch_input_embs[i, -seq_len:, :] = input_embs
batch_attention_mask[i, -seq_len:] = attention_mask
# 5. 创建 global_tokens 的批量版本
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
batch_global_tokens = global_tokens_tensor.unsqueeze(0).expand(batch_size, -1)
return {
"input_embs": batch_input_embs,
"global_tokens": batch_global_tokens,
}, batch_attention_mask |