File size: 19,738 Bytes
fc99023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import os
import sys
import time
import numpy as np
import soundfile as sf
from collections import defaultdict
import json
from datetime import datetime
current_dir = os.path.dirname(os.path.abspath(__file__))
print('add current dir to sys.path', current_dir)
sys.path.append(current_dir)
from sparktts.models.audio_tokenizer import BiCodecTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
from utilities import generate_embeddings_batch
def calculate_rtf(audio_length_seconds, processing_time_seconds):
"""
计算RTF (Real-Time Factor)
RTF = 处理时间 / 音频长度
RTF < 1 表示实时处理,RTF > 1 表示处理时间超过音频长度
"""
return processing_time_seconds / audio_length_seconds
def generate_speech_batch_with_timing(model, tokenizer, texts, bicodec, prompt_text=None, prompt_audio=None,
max_new_tokens=3000, do_sample=True, top_k=50, top_p=0.95,
temperature=1.0, device="cuda:0"):
"""
带时间测量的批量语音生成函数
Returns:
tuple: (音频波形列表, 处理时间, 音频长度列表)
"""
import torch
# 设置eos_token_id
eos_token_id = model.config.vocab_size - 1
# 生成输入嵌入
embeddings, attention_mask = generate_embeddings_batch(
model=model,
tokenizer=tokenizer,
texts=texts,
bicodec=bicodec,
prompt_text=prompt_text,
prompt_audio=prompt_audio
)
batch_size = len(texts)
global_tokens = embeddings['global_tokens']
# 设置模型为评估模式
model.eval()
# 开始计时
start_time = time.time()
with torch.no_grad():
# 使用模型的generate方法进行批量生成
generated_outputs = model.generate(
inputs_embeds=embeddings['input_embs'],
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_k=top_k,
top_p=top_p,
temperature=temperature,
eos_token_id=eos_token_id,
pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id,
use_cache=True
)
# 处理每个样本的生成结果
wavs = []
eos_index = torch.where(generated_outputs == eos_token_id)[1]
for i in range(batch_size):
# 获取当前样本的生成结果
sample_outputs = generated_outputs[i]
# 找到第一个eos_token_id
eos_token_id_index = eos_index[i]
sample_outputs = sample_outputs[:eos_token_id_index]
# 使用BiCodec解码生成音频
with torch.no_grad():
wav = bicodec.detokenize(global_tokens[i:i+1], sample_outputs.unsqueeze(0))
wavs.append(wav)
# 结束计时
end_time = time.time()
processing_time = end_time - start_time
# 计算每个音频的长度(秒)
sample_rate = bicodec.config['sample_rate']
audio_lengths = [len(wav) / sample_rate for wav in wavs]
return wavs, processing_time, audio_lengths
def generate_speech_with_timing(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None,
max_new_tokens=3000, do_sample=True, top_k=50, top_p=0.95,
temperature=1.0, device="cuda:0"):
"""
带时间测量的单次语音生成函数
Returns:
tuple: (音频波形, 处理时间, 音频长度)
"""
import torch
# 设置eos_token_id
eos_token_id = model.config.vocab_size - 1
# 生成输入嵌入
embeddings, attention_mask = generate_embeddings_batch(
model=model,
tokenizer=tokenizer,
texts=[text],
bicodec=bicodec,
prompt_text=prompt_text,
prompt_audio=prompt_audio
)
batch_size = 1
global_tokens = embeddings['global_tokens']
# 设置模型为评估模式
model.eval()
# 开始计时
start_time = time.time()
with torch.no_grad():
# 使用模型的generate方法进行生成
generated_outputs = model.generate(
inputs_embeds=embeddings['input_embs'],
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_k=top_k,
top_p=top_p,
temperature=temperature,
eos_token_id=eos_token_id,
pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id,
use_cache=True
)
# 处理生成结果
sample_outputs = generated_outputs[0]
eos_index = torch.where(generated_outputs[0] == eos_token_id)[0]
if len(eos_index) > 0:
sample_outputs = sample_outputs[:eos_index[0]]
# 使用BiCodec解码生成音频
with torch.no_grad():
wav = bicodec.detokenize(global_tokens, sample_outputs.unsqueeze(0))
# 结束计时
end_time = time.time()
processing_time = end_time - start_time
# 计算音频长度(秒)
sample_rate = bicodec.config['sample_rate']
audio_length = len(wav) / sample_rate
return wav, processing_time, audio_length
def warmup_model(model, tokenizer, audio_tokenizer, prompt_audio=None, device="cuda:0", warmup_count=3):
"""
模型预热函数,进行几次不计算时间的生成
Args:
model: 语言模型
tokenizer: 文本分词器
audio_tokenizer: BiCodecTokenizer实例
prompt_audio: 提示音频(可选)
device: 设备
warmup_count: 预热次数
Returns:
None
"""
import torch
print(f"开始模型预热,进行 {warmup_count} 次生成...")
# 预热用的简单文本
warmup_texts = [
"你好,这是一个预热测试。",
"人工智能技术正在快速发展。",
"语音合成技术将文本转换为自然的语音输出。"
]
for i in range(warmup_count):
print(f" 预热 {i+1}/{warmup_count}")
# 选择预热文本
warmup_text = warmup_texts[i % len(warmup_texts)]
try:
# 设置eos_token_id
eos_token_id = model.config.vocab_size - 1
# 生成输入嵌入
embeddings, attention_mask = generate_embeddings_batch(
model=model,
tokenizer=tokenizer,
texts=[warmup_text],
bicodec=audio_tokenizer,
prompt_text=None,
prompt_audio=prompt_audio
)
global_tokens = embeddings['global_tokens']
# 设置模型为评估模式
model.eval()
with torch.no_grad():
# 使用模型的generate方法进行生成
generated_outputs = model.generate(
inputs_embeds=embeddings['input_embs'],
attention_mask=attention_mask,
max_new_tokens=1000, # 预热时使用较少的token
do_sample=True,
top_k=50,
top_p=0.95,
temperature=1.0,
eos_token_id=eos_token_id,
pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id,
use_cache=True
)
# 处理生成结果
sample_outputs = generated_outputs[0]
eos_index = torch.where(generated_outputs[0] == eos_token_id)[0]
if len(eos_index) > 0:
sample_outputs = sample_outputs[:eos_index[0]]
# 使用BiCodec解码生成音频(不保存)
with torch.no_grad():
wav = audio_tokenizer.detokenize(global_tokens, sample_outputs.unsqueeze(0))
print(f" 预热完成,生成音频长度: {len(wav) / audio_tokenizer.config['sample_rate']:.2f}s")
except Exception as e:
print(f" 预热错误: {str(e)}")
print("模型预热完成!")
print("-" * 40)
def run_rtf_batch_test(texts, model, tokenizer, audio_tokenizer, prompt_audio=None,
device="cuda:0", output_dir="rtf_test_results", warmup_count=3, batch_size=4):
"""
运行批量RTF测试
Args:
texts: 要测试的文本列表
model: 语言模型
tokenizer: 文本分词器
audio_tokenizer: BiCodecTokenizer实例
prompt_audio: 提示音频(可选)
device: 设备
output_dir: 输出目录
warmup_count: 预热次数
batch_size: 批量大小
Returns:
dict: 测试结果统计
"""
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
# 首先进行模型预热
warmup_model(model, tokenizer, audio_tokenizer, prompt_audio, device, warmup_count)
# 测试结果存储
results = []
total_processing_time = 0
total_audio_length = 0
print(f"开始批量RTF测试,共 {len(texts)} 个文本,批量大小: {batch_size}...")
print("=" * 80)
# 将文本分批处理
for batch_start in range(0, len(texts), batch_size):
batch_end = min(batch_start + batch_size, len(texts))
batch_texts = texts[batch_start:batch_end]
batch_num = batch_start // batch_size + 1
total_batches = (len(texts) + batch_size - 1) // batch_size
print(f"\n处理批次 {batch_num}/{total_batches} (文本 {batch_start+1}-{batch_end})")
print(f"批次文本数量: {len(batch_texts)}")
try:
# 批量生成语音并计时
wavs, processing_time, audio_lengths = generate_speech_batch_with_timing(
model=model,
tokenizer=tokenizer,
texts=batch_texts,
bicodec=audio_tokenizer,
prompt_audio=prompt_audio,
device=device
)
# 计算批次的总音频时长
batch_total_audio_length = sum(audio_lengths)
# 计算批次的RTF:处理时间 / 总音频时长
batch_rtf = calculate_rtf(batch_total_audio_length, processing_time)
# 处理每个生成的音频
for i, (wav, audio_length) in enumerate(zip(wavs, audio_lengths)):
text_index = batch_start + i
text = batch_texts[i]
# 保存音频文件
output_filename = os.path.join(output_dir, f"test_{text_index+1:03d}.wav")
sf.write(output_filename, wav, audio_tokenizer.config['sample_rate'])
# 记录结果
result = {
"index": text_index + 1,
"batch": batch_num,
"text": text,
"batch_processing_time": processing_time, # 整个批次的处理时间
"audio_length": audio_length,
"batch_rtf": batch_rtf, # 整个批次的RTF
"output_file": output_filename
}
results.append(result)
print(f" 文本 {text_index+1}: 音频长度 {audio_length:.3f}s")
print(f" 批次总处理时间: {processing_time:.3f}s")
print(f" 批次总音频时长: {batch_total_audio_length:.3f}s")
print(f" 批次RTF: {batch_rtf:.3f}")
# 累加到总体统计
total_processing_time += processing_time
total_audio_length += batch_total_audio_length
except Exception as e:
print(f" 批次错误: {str(e)}")
# 记录失败的批次
for i, text in enumerate(batch_texts):
text_index = batch_start + i
result = {
"index": text_index + 1,
"batch": batch_num,
"text": text,
"error": str(e)
}
results.append(result)
# 计算总体统计
successful_results = [r for r in results if "error" not in r]
if successful_results:
# 计算批次级别的统计
batch_rtfs = [r["batch_rtf"] for r in successful_results]
batch_processing_times = [r["batch_processing_time"] for r in successful_results]
avg_audio_length = np.mean([r["audio_length"] for r in successful_results])
total_rtf = calculate_rtf(total_audio_length, total_processing_time)
stats = {
"total_tests": len(texts),
"successful_tests": len(successful_results),
"failed_tests": len(texts) - len(successful_results),
"batch_size": batch_size,
"total_batches": total_batches,
"total_processing_time": total_processing_time,
"total_audio_length": total_audio_length,
"total_rtf": total_rtf,
"avg_batch_rtf": np.mean(batch_rtfs),
"avg_batch_processing_time": np.mean(batch_processing_times),
"avg_audio_length": avg_audio_length,
"min_batch_rtf": min(batch_rtfs),
"max_batch_rtf": max(batch_rtfs),
"std_batch_rtf": np.std(batch_rtfs)
}
else:
stats = {
"total_tests": len(texts),
"successful_tests": 0,
"failed_tests": len(texts),
"batch_size": batch_size,
"total_batches": total_batches,
"error": "所有测试都失败了"
}
# 保存详细结果到JSON文件
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = os.path.join(output_dir, f"rtf_test_results_{timestamp}.json")
output_data = {
"test_info": {
"timestamp": timestamp,
"device": device,
"model_path": current_dir,
"batch_size": batch_size
},
"statistics": stats,
"detailed_results": results
}
with open(results_file, 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=2)
# 打印统计结果
print("\n" + "=" * 80)
print("RTF测试统计结果:")
print("=" * 80)
print(f"总测试数: {stats['total_tests']}")
print(f"成功测试数: {stats['successful_tests']}")
print(f"失败测试数: {stats['failed_tests']}")
print(f"批量大小: {batch_size}")
print(f"总批次数: {total_batches}")
if successful_results:
print(f"总处理时间: {stats['total_processing_time']:.3f}s")
print(f"总音频长度: {stats['total_audio_length']:.3f}s")
print(f"总体RTF: {stats['total_rtf']:.3f}")
print(f"平均批次RTF: {stats['avg_batch_rtf']:.3f}")
print(f"平均批次处理时间: {stats['avg_batch_processing_time']:.3f}s")
print(f"平均音频长度: {stats['avg_audio_length']:.3f}s")
print(f"最小批次RTF: {stats['min_batch_rtf']:.3f}")
print(f"最大批次RTF: {stats['max_batch_rtf']:.3f}")
print(f"批次RTF标准差: {stats['std_batch_rtf']:.3f}")
print(f"\n详细结果已保存到: {results_file}")
print(f"音频文件保存在: {output_dir}")
return stats, results
if __name__ == "__main__":
import torch
device = 'cuda:2'
# 初始化模型和分词器
print("正在加载模型和分词器...")
audio_tokenizer = BiCodecTokenizer(model_dir=current_dir, device=device)
tokenizer = AutoTokenizer.from_pretrained(current_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(current_dir, trust_remote_code=True)
model = model.bfloat16().to(device)
model.eval()
# 加载提示音频(可选)
prompt_audio = None
prompt_audio_file = os.path.join(current_dir, 'kafka.wav')
if os.path.exists(prompt_audio_file):
print(f"加载提示音频: {prompt_audio_file}")
prompt_audio, sampling_rate = sf.read(prompt_audio_file)
target_sample_rate = audio_tokenizer.config['sample_rate']
if sampling_rate != target_sample_rate:
print(f"重采样从 {sampling_rate}Hz 到 {target_sample_rate}Hz...")
from librosa import resample
prompt_audio = resample(prompt_audio, orig_sr=sampling_rate, target_sr=target_sample_rate)
prompt_audio = np.array(prompt_audio, dtype=np.float32)
# 测试文本列表
test_texts = [
"一九五二年二月十日,志愿军大英雄张积慧击落美军双料王牌飞行员戴维斯,在自己飞机坠毁处距离戴维斯坠机处不足五百米的情况下,取得了世界空战史不可能复制的奇迹。伟大的张积慧。",
"在数字浪潮汹涌的今天,数智技术正以前所未有的力量重塑着社会的每一个角落。",
"为了点燃青少年对科技的热情,培养他们的创新思维与动手能力",
"杏花岭区巨轮街道社区教育学校携手中车社区教育分校,与太原市科学技术协会联手,于暑期精心策划了一场别开生面的青少年数智技术服务港探索之旅,吸引了众多社区青少年的积极参与。",
"一踏入数智技术服务港的大门,一股浓厚的科技气息便扑面而来。",
"科普课堂上,“简易红绿灯”科学实验更是将抽象的电路原理与日常生活紧密相连。",
"实验开始前,老师生动地介绍了实验物品,并引导青少年思考红绿灯的工作原理,激发了他们浓厚的探索兴趣。",
"在老师的指导下,青少年们开始动手组装电路,将红绿灯的各个部件连接起来。",
"他们小心翼翼地调整电路,确保每个部件都正确连接,红灯、绿灯、黄灯依次亮起,仿佛在讲述一个关于交通规则的故事。",
"实验过程中,青少年们不仅学到了电路知识,还体验到了动手实践的乐趣。",
"他们纷纷表示,这次实验不仅让他们对科技有了更深的理解,还培养了他们的创新思维和动手能力。",
"数智技术服务港,让科技触手可及,让创新无处不在。",
"人工智能技术正在快速发展,为各行各业带来了革命性的变化。",
"深度学习模型在语音识别、图像处理、自然语言处理等领域取得了突破性进展。",
"机器学习算法能够从大量数据中学习模式,并做出准确的预测和决策。",
"神经网络模拟人脑的工作方式,通过多层神经元处理复杂的信息。",
"计算机视觉技术让机器能够理解和分析图像内容。",
"自然语言处理技术使计算机能够理解和生成人类语言。",
"语音合成技术将文本转换为自然的语音输出。",
"大数据分析帮助企业发现隐藏的模式和趋势。"
]
# 运行RTF测试
stats, results = run_rtf_batch_test(
texts=test_texts,
model=model,
tokenizer=tokenizer,
audio_tokenizer=audio_tokenizer,
prompt_audio=prompt_audio,
device=device,
output_dir="rtf_test_results",
warmup_count=1, # 预热3次
batch_size=8
) |