File size: 33,083 Bytes
a62c403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
RWKV TTS 交互式音频生成工具
使用 webrwkv_py 和 ONNX Runtime 进行音频生成
"""
import os
import sys
import re
import time
import warnings
from pathlib import Path
from typing import Dict, Any, Tuple, List
import numpy as np
import soundfile as sf
import click
# 抑制警告
warnings.filterwarnings("ignore", category=UserWarning, module="numpy")
warnings.filterwarnings("ignore", category=UserWarning, module="onnxruntime")
warnings.filterwarnings("ignore", category=UserWarning, module="torch")
warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
np.seterr(all='ignore')
# 检查并导入必要的库
try:
import webrwkv_py
HAS_WEBRWKV = True
except ImportError:
HAS_WEBRWKV = False
print("❌ 错误: 需要安装 'webrwkv_py' 库")
print("请运行: pip install webrwkv_py")
sys.exit(1)
try:
import onnxruntime as ort
HAS_ONNX = True
except ImportError:
HAS_ONNX = False
print("❌ 错误: 需要安装 'onnxruntime' 库")
print("请运行: pip install onnxruntime")
sys.exit(1)
try:
from transformers import AutoTokenizer
HAS_TRANSFORMERS = True
except ImportError:
HAS_TRANSFORMERS = False
print("❌ 错误: 需要安装 'transformers' 库")
print("请运行: pip install transformers")
sys.exit(1)
try:
import questionary
HAS_QUESTIONARY = True
except ImportError:
HAS_QUESTIONARY = False
print("❌ 错误: 需要安装 'questionary' 库来使用交互式界面")
print("请运行: pip install questionary")
sys.exit(1)
# 导入属性工具
try:
from properties_util import (
SPEED_MAP, PITCH_MAP, AGE_MAP, GENDER_MAP, EMOTION_MAP
)
# 从映射中提取选项
age_choices = list(AGE_MAP.keys())
gender_choices = list(GENDER_MAP.keys())
emotion_choices = list(EMOTION_MAP.keys())
pitch_choices = list(PITCH_MAP.keys())
speed_choices = list(SPEED_MAP.keys())
except ImportError:
print("⚠️ 警告: 无法导入 properties_util,使用默认选项")
# 默认选项
age_choices = ['child', 'teenager', 'youth-adult', 'middle-aged', 'elderly']
gender_choices = ['female', 'male'] # 与properties_util.py保持一致
emotion_choices = ['NEUTRAL', 'HAPPY', 'SAD', 'ANGRY', 'FEARFUL', 'DISGUSTED', 'SURPRISED']
pitch_choices = ['low_pitch', 'medium_pitch', 'high_pitch', 'very_high_pitch']
speed_choices = ['very_slow', 'slow', 'medium', 'fast', 'very_fast']
def detect_token_lang(token: str) -> str:
"""基于字符集合的简单词级语言检测。返回 'en' 或 'zh'。"""
if not token:
return 'en'
has_zh = re.search(r"[\u4e00-\u9fff]", token) is not None
has_en = re.search(r"[A-Za-z]", token) is not None
if has_zh and not has_en:
return 'zh'
if has_en and not has_zh:
return 'en'
if has_zh and has_en:
return 'zh'
return 'en'
def sample_logits(logits, temperature=1.0, top_p=0.85, top_k=0):
"""从logits中采样token"""
if temperature == 0:
temperature = 1.0
top_p = 0
if isinstance(logits, list):
logits = np.array(logits)
try:
from scipy import special
probs = special.softmax(logits, axis=-1)
except ImportError:
# 如果没有scipy,使用numpy的简单实现
exp_logits = np.exp(logits - np.max(logits))
probs = exp_logits / np.sum(exp_logits)
top_k = int(top_k)
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff_mask = cumulative_probs >= top_p
if np.any(cutoff_mask):
cutoff_idx = np.argmax(cutoff_mask)
cutoff = float(sorted_probs[cutoff_idx])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), size=1, p=probs)
return int(out[0])
def get_unique_filename(output_dir, text, extension=".wav"):
"""生成唯一的文件名,避免重名"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
prefix = text[:3] if len(text) >= 3 else text
prefix = re.sub(r'[\W\s]', '', prefix).strip()
base_name = prefix
index = 0
while True:
if index == 0:
filename = base_name + extension
else:
filename = f"{base_name}_{index}{extension}"
filepath = output_dir / filename
if not filepath.exists():
return str(filepath)
index += 1
class TTSGenerator:
"""TTS生成器类,负责音频生成和统计"""
def __init__(self, runtime, tokenizer, decoder_path, device, model_path):
self.runtime = runtime
self.tokenizer = tokenizer
self.decoder_path = decoder_path
self.device = device
self.model_path = model_path
# 初始化 RefAudioUtilities 实例
print('🎿 开始加载音频编码器模型')
try:
audio_tokenizer_path = os.path.join(model_path, 'BiCodecTokenize.onnx')
wav2vec2_path = os.path.join(model_path, 'wav2vec2-large-xlsr-53.onnx')
from ref_audio_utilities import RefAudioUtilities
self.ref_audio_utilities = RefAudioUtilities(audio_tokenizer_path, wav2vec2_path)
print('✅ 音频编码器模型加载成功')
except Exception as e:
print(f'❌ 音频编码器模型加载失败: {e}')
self.ref_audio_utilities = None
# 缓存ONNX session
print('🎿 开始加载ONNX模型')
try:
self.ort_session = ort.InferenceSession(decoder_path,
providers=['CUDAExecutionProvider','CPUExecutionProvider'])
print(f"🖥️ONNX Session for generate wavform actual providers: {self.ort_session.get_providers()}")
print('✅ ONNX模型加载成功')
except Exception as e:
print(f'❌ ONNX模型加载失败: {e}')
raise
# 生成统计信息
self.generation_stats = {
'total_generations': 0,
'total_tokens': 0,
'total_time': 0.0,
'last_generation': {
'text': '',
'params': {},
'total_time': 0.0,
'total_tokens': 0,
'audio_duration': 0.0,
'rtf': 0.0,
'global_speed': 0.0,
'semantic_speed': 0.0,
'decode_speed': 0.0,
'timestamp': '',
'output_path': ''
}
}
def reset_runtime(self):
"""重置runtime状态"""
try:
self.runtime.reset()
print("🔄 Runtime状态已重置")
except Exception as e:
print(f"⚠️ Runtime重置失败: {e}")
def generate_audio(self, params: Dict[str, Any]) -> Tuple[np.ndarray, Dict[str, Any]]:
"""生成音频"""
start_time = time.time()
# 重置runtime状态
self.reset_runtime()
# 获取参数
text = params['text']
# 检查是否为 zero shot 模式
if params.get('zero_shot', False):
# Zero shot 模式
ref_audio_path = params['ref_audio_path']
prompt_text = params.get('prompt_text', "希望你以后能够做的,比我还好呦!")
print(f"🎯 开始生成音频 (Zero Shot 模式): {text}")
print(f"📊 参数: 参考音频={ref_audio_path}, 提示文本={prompt_text}")
# 检测语言
lang = detect_token_lang(text)
print(f"🌍 检测到语言: {lang}")
# 使用 zero shot 方法生成 tokens
global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed = self._generate_tokens_zeroshot(text, ref_audio_path, prompt_text)
else:
# 传统模式
age = params['age']
gender = params['gender']
emotion = params['emotion']
pitch = params['pitch']
speed = params['speed']
print(f"🎯 开始生成音频: {text}")
print(f"📊 参数: 年龄={age}, 性别={gender}, 情感={emotion}, 音高={pitch}, 速度={speed}")
# 检测语言
lang = detect_token_lang(text)
print(f"🌍 检测到语言: {lang}")
# 生成global tokens和semantic tokens
global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed = self._generate_tokens(text, age, gender, emotion, pitch, speed)
# 解码音频
print("🎵 解码音频...")
decode_start = time.time()
# 准备输入数据 - 按照tts_gui_simple.py的逻辑
print("🔧 准备解码器输入数据...")
global_tokens_array = np.array(global_tokens, dtype=np.int64).reshape(1, 1, -1)
semantic_tokens_array = np.array(semantic_tokens, dtype=np.int64).reshape(1, -1)
print(f'🎯 生成的全局token: {global_tokens}')
print(f'🎯 生成的语义token: {semantic_tokens}')
print(f'📊 解码器输入形状: global_tokens={global_tokens_array.shape}, semantic_tokens={semantic_tokens_array.shape}')
# 使用ONNX解码器生成音频
print("🎵 开始ONNX解码器推理...")
outputs = self.ort_session.run(None, {
"global_tokens": global_tokens_array,
"semantic_tokens": semantic_tokens_array
})
wav_data = outputs[0].reshape(-1)
decode_time = time.time() - decode_start
# 计算音频时长和RTF
audio_duration = len(wav_data) / 16000 # 采样率16kHz
decode_speed = len(semantic_tokens) / decode_time if decode_time > 0 else 0
total_time = time.time() - start_time
total_tokens = len(global_tokens) + len(semantic_tokens)
rtf = total_time / audio_duration if audio_duration > 0 else 0
print(f"✅ 音频解码完成,时长 {audio_duration:.2f}s,耗时 {decode_time:.2f}s,速度 {decode_speed:.1f} tokens/s")
print(f"📊 总耗时: {total_time:.2f}s,RTF: {rtf:.2f}")
# 更新统计信息
self.generation_stats['total_generations'] += 1
self.generation_stats['total_tokens'] += total_tokens
self.generation_stats['total_time'] += total_time
self.generation_stats['last_generation'] = {
'text': text,
'params': params,
'total_time': total_time,
'total_tokens': total_tokens,
'audio_duration': audio_duration,
'rtf': rtf,
'global_speed': global_speed,
'semantic_speed': semantic_speed,
'decode_speed': decode_speed,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
'output_path': ''
}
return wav_data, self.generation_stats['last_generation']
def _generate_tokens(self, text: str, age: str, gender: str, emotion: str, pitch: str, speed: str) -> Tuple[List[int], List[int], float, float, float, float]:
"""
生成global tokens和semantic tokens
Args:
text: 原始文本内容
age: 年龄参数
gender: 性别参数
emotion: 情感参数
pitch: 音高参数
speed: 速度参数
Returns:
Tuple: (global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed)
"""
# 编码文本
print("🔤 编码文本...")
tokens = self.tokenizer.encode(text)
print(f"✅ 文本编码完成,共 {len(tokens)} 个token")
# 生成全局token
print("🌐 生成全局token...")
global_start = time.time()
# 准备输入tokens
TTS_TAG_0 = 8193
TTS_TAG_1 = 8194
TTS_TAG_2 = 8195
# 构建属性tokens - 使用properties_util.py
from properties_util import convert_standard_properties_to_tokens
properties_text = convert_standard_properties_to_tokens(age, gender, emotion, pitch, speed)
print(f'🔤 属性文本: {properties_text}')
properties_tokens = self.tokenizer.encode(properties_text, add_special_tokens=False)
properties_tokens = [i + 8196 + 4096 for i in properties_tokens]
# 构建文本tokens
text_tokens = [i + 8196 + 4096 for i in tokens]
# 组合所有tokens
all_idx = properties_tokens + [TTS_TAG_2] + text_tokens + [TTS_TAG_0]
print(f'🔢 属性token: {properties_tokens}')
print(f'🔢 文本token: {text_tokens}')
print(f'🎯 组合后的tokens: {all_idx}')
# Prefill阶段
print("💎 开始Prefill阶段...")
logits = self.runtime.predict(all_idx)
print(f"✅ Prefill完成,logits长度: {len(logits)}")
# 生成全局token - 按照tts_gui_simple.py的逻辑
print("🌍 开始生成全局token...")
global_tokens_size = 32
global_tokens = []
for i in range(global_tokens_size):
# 从logits中采样token
sampled_id = sample_logits(logits[0:4096], temperature=1.0, top_p=0.95, top_k=20)
global_tokens.append(sampled_id)
# 预测下一个token
sampled_id += 8196
logits = self.runtime.predict_next(sampled_id)
global_time = time.time() - global_start
global_speed = global_tokens_size / global_time if global_time > 0 else 0
print(f"✅ 全局token生成完成,共 {len(global_tokens)} 个token,耗时 {global_time:.2f}s,速度 {global_speed:.1f} tokens/s")
print(f'🎯 生成的全局token: {global_tokens}')
# 生成语义token
print("🧠 生成语义token...")
semantic_start = time.time()
# 按照tts_gui_simple.py的逻辑生成语义token
x = self.runtime.predict_next(TTS_TAG_1)
semantic_tokens = []
for i in range(2048): # 最大生成2048个token
sampled_id = sample_logits(x[0:8193], temperature=1.0, top_p=0.95, top_k=80)
if sampled_id == 8192: # 遇到结束标记
print(f"🛑 语义token生成结束,遇到结束标记,共生成 {len(semantic_tokens)} 个token")
break
semantic_tokens.append(sampled_id)
x = self.runtime.predict_next(sampled_id)
semantic_time = time.time() - semantic_start
semantic_speed = len(semantic_tokens) / semantic_time if semantic_time > 0 else 0
print(f"✅ 语义token生成完成,共 {len(semantic_tokens)} 个token,耗时 {semantic_time:.2f}s,速度 {semantic_speed:.1f} tokens/s")
return global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed
def _generate_tokens_zeroshot(self, text: str, ref_audio_path: str, prompt_text: str = "希望你以后能够做的,比我还好呦!") -> Tuple[List[int], List[int], float, float, float, float]:
"""
使用 zero shot 方式生成global tokens和semantic tokens
Args:
text: 原始文本内容
ref_audio_path: 参考音频路径
prompt_text: 提示文本,默认为"希望你以后能够做的,比我还好呦!"
Returns:
Tuple: (global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed)
"""
if self.ref_audio_utilities is None:
raise RuntimeError("RefAudioUtilities 未初始化,无法使用 zero shot 模式")
# 编码文本
print("🔤 编码文本...")
text_tokens = self.tokenizer.encode(prompt_text + text, add_special_tokens=False)
text_tokens = [i + 8196 + 4096 for i in text_tokens]
print(f"✅ 文本编码完成,共 {len(text_tokens)} 个token")
# 从参考音频获取 global tokens 和 semantic tokens
print("🎵 处理参考音频...")
global_tokens, prompt_semantic_tokens = self.ref_audio_utilities.tokenize(ref_audio_path)
print(f"✅ 参考音频处理完成")
# 直接使用flatten()展平数组并转换为Python一维数组
global_tokens = [int(i) + 8196 for i in global_tokens.flatten()]
prompt_semantic_tokens = [int(i) for i in prompt_semantic_tokens.flatten()]
print(f'🎯 参考音频 global_tokens: {global_tokens}')
print(f'🎯 参考音频 semantic_tokens: {prompt_semantic_tokens}')
# 生成全局token
print("🌐 生成全局token...")
global_start = time.time()
# 准备输入tokens
TTS_TAG_0 = 8193
TTS_TAG_1 = 8194
TTS_TAG_2 = 8195
# 组合所有tokens
all_idx = [TTS_TAG_2] + text_tokens + [TTS_TAG_0] + global_tokens + [TTS_TAG_1] + prompt_semantic_tokens
print(f'🎯 组合后的tokens: {all_idx}')
# Prefill阶段
print("💎 开始Prefill阶段...")
logits = self.runtime.predict(all_idx)
print(f"✅ Prefill完成,logits长度: {len(logits)}")
global_time = time.time() - global_start
global_speed = len(global_tokens) / global_time if global_time > 0 else 0
print(f"✅ 全局token处理完成,共 {len(global_tokens)} 个token,耗时 {global_time:.2f}s,速度 {global_speed:.1f} tokens/s")
# 生成语义token
print("🧠 生成语义token...")
semantic_start = time.time()
# 从当前logits开始生成语义token
x = logits
semantic_tokens = []
for i in range(2048): # 最大生成2048个token
sampled_id = sample_logits(x[0:8193], temperature=1.0, top_p=0.95, top_k=80)
if sampled_id == 8192: # 遇到结束标记
print(f"🛑 语义token生成结束,遇到结束标记,共生成 {len(semantic_tokens)} 个token")
break
semantic_tokens.append(sampled_id)
x = self.runtime.predict_next(sampled_id)
semantic_time = time.time() - semantic_start
semantic_speed = len(semantic_tokens) / semantic_time if semantic_time > 0 else 0
print(f"✅ 语义token生成完成,共 {len(semantic_tokens)} 个token,耗时 {semantic_time:.2f}s,速度 {semantic_speed:.1f} tokens/s")
global_tokens = [i - 8196 for i in global_tokens]
return global_tokens, semantic_tokens, global_time, global_speed, semantic_time, semantic_speed
def display_stats(stats: Dict[str, Any]):
"""显示生成统计信息"""
print("\n" + "="*60)
print("📊 生成统计信息")
print("="*60)
if stats['text']:
print(f"🎯 生成参数: {stats['params']}")
print(f"📝 文本: {stats['text']}")
print(f"⏱️ 总耗时: {stats['total_time']:.2f}s")
print(f"🎵 音频时长: {stats['audio_duration']:.2f}s")
print(f"📈 RTF: {stats['rtf']:.2f}")
print(f"🔢 总token数: {stats['total_tokens']}")
print(f"🌐 全局token速度: {stats['global_speed']:.1f} tokens/s")
print(f"🧠 语义token速度: {stats['semantic_speed']:.1f} tokens/s")
print(f"🎵 解码速度: {stats['decode_speed']:.1f} tokens/s")
print(f"🕐 时间: {stats['timestamp']}")
if stats['output_path']:
print(f"💾 保存路径: {stats['output_path']}")
else:
print("暂无生成记录")
print("="*60)
def interactive_parameter_selection(generator: TTSGenerator):
"""交互式参数选择界面"""
print("\n🎮 进入交互式配置界面")
print("💡 使用方向键选择,回车确认,Ctrl+C退出")
while True:
try:
print("\n" + "="*60)
print("🎵 RWKV TTS 参数配置")
print("="*60)
# 选择生成模式
generation_mode = questionary.select(
"🎯 请选择生成模式:",
choices=[
"传统模式 (使用属性参数)",
"Zero Shot 模式 (使用参考音频)"
],
default="传统模式 (使用属性参数)"
).ask()
if generation_mode is None: # 用户按Ctrl+C
break
is_zero_shot = generation_mode == "Zero Shot 模式 (使用参考音频)"
# 文本输入
text = questionary.text(
"📝 请输入要转换的文本:",
default=generator.generation_stats['last_generation'].get('text', '你好,世界!')
).ask()
if text is None: # 用户按Ctrl+C
break
# 输出目录
output_dir = questionary.text(
"📁 请输入输出目录:",
default="./generated_audio"
).ask()
if output_dir is None:
break
if is_zero_shot:
# Zero Shot 模式参数
ref_audio_path = questionary.text(
"🎵 请输入参考音频路径:",
default="zero_shot_prompt.wav"
).ask()
if ref_audio_path is None:
break
prompt_text = questionary.text(
"💬 请输入提示文本 (可选,回车使用默认值):",
default="希望你以后能够做的,能比我还好呦!"
).ask()
if prompt_text is None:
break
# 确认生成
confirm = questionary.confirm(
f"🚀 确认生成音频 (Zero Shot 模式)?\n"
f"文本: {text}\n"
f"参考音频: {ref_audio_path}\n"
f"提示文本: {prompt_text}\n"
f"输出目录: {output_dir}",
default=True
).ask()
if confirm:
# 准备参数
params = {
'text': text,
'zero_shot': True,
'ref_audio_path': ref_audio_path,
'prompt_text': prompt_text,
'output_dir': output_dir
}
# 生成音频
try:
wav_data, stats = generator.generate_audio(params)
# 生成唯一文件名
output_path = get_unique_filename(output_dir, text)
# 保存音频
sf.write(output_path, wav_data, 16000)
stats['output_path'] = output_path
print(f"✅ 音频生成成功,保存至: {output_path}")
stats['生成参数'] = f'参考音频={ref_audio_path}, 提示文本={prompt_text}'
# 显示统计信息
display_stats(stats)
except Exception as e:
print(f"❌ 生成失败: {e}")
import traceback
traceback.print_exc()
else:
# 传统模式参数
# 年龄选择
age = questionary.select(
"👶 请选择年龄:",
choices=age_choices,
default=age_choices[3] # middle-aged
).ask()
if age is None:
break
# 性别选择
gender = questionary.select(
"👤 请选择性别:",
choices=gender_choices,
default=gender_choices[0] # female (第一个选项)
).ask()
if gender is None:
break
# 情感选择
emotion = questionary.select(
"😊 请选择情感:",
choices=emotion_choices,
default=emotion_choices[1] # NEUTRAL
).ask()
if emotion is None:
break
# 音高选择
pitch = questionary.select(
"🎵 请选择音高:",
choices=pitch_choices,
default=pitch_choices[1] # medium_pitch
).ask()
if pitch is None:
break
# 速度选择
speed = questionary.select(
"⚡ 请选择速度:",
choices=speed_choices,
default=speed_choices[2] # medium
).ask()
if speed is None:
break
# 确认生成
confirm = questionary.confirm(
f"🚀 确认生成音频?\n"
f"文本: {text}\n"
f"参数: 年龄={age}, 性别={gender}, 情感={emotion}, 音高={pitch}, 速度={speed}\n"
f"输出目录: {output_dir}",
default=True
).ask()
if confirm:
# 准备参数
params = {
'text': text,
'zero_shot': False,
'age': age,
'gender': gender,
'emotion': emotion,
'pitch': pitch,
'speed': speed,
'output_dir': output_dir
}
# 生成音频
try:
wav_data, stats = generator.generate_audio(params)
# 生成唯一文件名
output_path = get_unique_filename(output_dir, text)
# 保存音频
sf.write(output_path, wav_data, 16000)
stats['output_path'] = output_path
print(f"✅ 音频生成成功,保存至: {output_path}")
stats['生成参数'] = f'年龄={age}, 性别={gender}, 情感={emotion}, 音高={pitch}, 速度={speed}'
# 显示统计信息
display_stats(stats)
except Exception as e:
print(f"❌ 生成失败: {e}")
import traceback
traceback.print_exc()
# 询问是否继续
continue_generation = questionary.confirm(
"🔄 是否继续生成音频?",
default=True
).ask()
if not continue_generation:
break
except KeyboardInterrupt:
print("\n👋 用户中断,退出程序")
break
except Exception as e:
print(f"❌ 发生错误: {e}")
import traceback
traceback.print_exc()
break
print("👋 感谢使用 RWKV TTS!")
@click.command()
@click.option('--model_path', required=True, help='RWKV模型路径')
def main(model_path):
"""RWKV TTS 主程序"""
print("🚀 欢迎使用 RWKV TTS 交互式音频生成工具!")
# 检查模型文件
if not os.path.exists(model_path):
print(f"❌ 错误: 模型路径不存在: {model_path}")
return
# 自动构建解码器路径
decoder_path = os.path.join(model_path, "BiCodecDetokenize.onnx")
print(f"🔍 自动设置解码器路径: {decoder_path}")
# 检查模型目录中的文件
print(f"🔍 检查模型目录: {model_path}")
try:
model_files = os.listdir(model_path)
print(f"📁 模型目录中的文件:")
for file in model_files:
file_path = os.path.join(model_path, file)
if os.path.isfile(file_path):
size = os.path.getsize(file_path)
print(f" 📄 {file} ({size:,} bytes)")
else:
print(f" 📁 {file}/")
except Exception as e:
print(f"⚠️ 无法列出模型目录内容: {e}")
if not os.path.exists(decoder_path):
print(f"❌ 错误: 解码器路径不存在: {decoder_path}")
return
# 选择设备
print("\n💎 选择设备 💎")
try:
devices = webrwkv_py.get_available_adapters_py()
except AttributeError:
# 如果新API不存在,尝试旧API
try:
devices = webrwkv_py.get_available_devices()
except AttributeError:
print("❌ 无法获取可用设备列表")
return
for i, device in enumerate(devices):
print(f"{i}: {device}")
device_choice = input("请选择设备: ")
try:
device_idx = int(device_choice)
if device_idx < 0 or device_idx >= len(devices):
print("❌ 无效的设备选择")
return
device = devices[device_idx]
print(f"✅ 选择设备: {device}")
except ValueError:
print("❌ 无效的设备选择")
return
# 加载模型
print("\n💎 加载模型 💎")
try:
# 尝试多种可能的模型文件名
possible_model_files = [
'webrwkv.safetensors',
]
webrwkv_model_path = None
for model_file in possible_model_files:
test_path = os.path.join(model_path, model_file)
if os.path.exists(test_path):
webrwkv_model_path = test_path
print(f"✅ 找到模型文件: {model_file}")
break
if webrwkv_model_path is None:
print(f"❌ 未找到模型文件")
print(f"💡 请检查模型目录 {model_path} 中是否包含以下文件之一:")
for model_file in possible_model_files:
print(f" - {model_file}")
return
print(f"🔍 尝试加载模型文件: {webrwkv_model_path}")
# 尝试新的API
model = webrwkv_py.Model(webrwkv_model_path, 'fp32', device_idx)
print(f"✅ 模型加载成功: {webrwkv_model_path}")
except Exception as e:
print(f"❌ 模型加载失败: {e}")
print(f"💡 请检查:")
print(f" 1. 模型文件路径是否正确: {webrwkv_model_path}")
print(f" 2. 模型文件是否完整")
print(f" 3. 设备索引是否正确: {device_idx}")
print(f" 4. 模型文件格式是否支持")
return
# 创建runtime
print("\n💎 创建 runtime 💎")
try:
runtime = model.create_thread_runtime()
print("✅ runtime 创建成功")
except Exception as e:
print(f"❌ runtime 创建失败: {e}")
return
# 加载tokenizer
print("\n💎 加载 tokenizer 💎")
try:
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print(f"✅ tokenizer 加载成功: {model_path}")
except Exception as e:
print(f"❌ tokenizer 加载失败: {e}")
print(f"💡 请检查模型目录 {model_path} 中是否包含正确的tokenizer文件")
return
# 创建TTS生成器
generator = TTSGenerator(runtime, tokenizer, decoder_path, device, model_path)
# 启动交互式界面
print("\n🎯 启动交互式配置界面...")
interactive_parameter_selection(generator)
if __name__ == "__main__":
main()
|