File size: 11,081 Bytes
a62c403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import onnxruntime as ort
import numpy as np
import librosa
import soundfile as sf
import soxr
from pathlib import Path
from typing import Tuple, Union, Optional
import soundfile as sf
class RefAudioUtilities:
"""音频处理工具类,使用ONNX模型生成tokens"""
def __init__(self, onnx_model_path: str, wav2vec2_path,
ref_segment_duration: float = 6.0, latent_hop_length: int = 320):
"""
初始化ONNX模型
Args:
onnx_model_path: ONNX模型文件路径
wav2vec2_path: wav2vec2 ONNX模型文件路径,如果为None则不加载wav2vec2模型
ref_segment_duration: 参考音频时长(秒)
latent_hop_length: 潜在特征跳长度
"""
self.ort_session = ort.InferenceSession(onnx_model_path,
providers=['CUDAExecutionProvider','CPUExecutionProvider'])
print(f"🖥️ONNX Session actual providers: {self.ort_session.get_providers()}")
self.sample_rate = 16000
self.ref_segment_duration = ref_segment_duration
self.latent_hop_length = latent_hop_length
# 获取模型输入输出信息
self.input_names = [input_info.name for input_info in self.ort_session.get_inputs()]
self.output_names = [output_info.name for output_info in self.ort_session.get_outputs()]
print(f"模型输入: {self.input_names}")
print(f"模型输出: {self.output_names}")
# 初始化wav2vec2模型
self.wav2vec2_session = ort.InferenceSession(wav2vec2_path,
providers=['CUDAExecutionProvider','CPUExecutionProvider'])
print(f"🖥️Wav2Vec2 Session actual providers: {self.wav2vec2_session.get_providers()}")
def load_audio(self, audio_path: Union[str, Path], target_sr: int = 16000,
volume_normalize: bool = False) -> np.ndarray:
"""
加载音频文件,与BiCodecTokenizer保持一致
Args:
audio_path: 音频文件路径
target_sr: 目标采样率
volume_normalize: 是否进行音量归一化
Returns:
音频数据数组
"""
if isinstance(audio_path, str):
audio_path = Path(audio_path)
# 使用soundfile加载音频,与BiCodecTokenizer保持一致
audio, sr = sf.read(audio_path)
if len(audio.shape) > 1:
audio = audio[:, 0] # 如果是立体声,取第一个通道
# 重采样到目标采样率
if sr != target_sr:
audio = soxr.resample(audio, sr, target_sr, quality="VHQ")
sr = target_sr
# 音量归一化
if volume_normalize:
audio = self._audio_volume_normalize(audio)
return audio
def _audio_volume_normalize(self, audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
"""音频音量归一化"""
# Sort the absolute values of the audio signal
temp = np.sort(np.abs(audio))
# If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
if temp[-1] < 0.1:
scaling_factor = max(
temp[-1], 1e-3
) # Prevent division by zero with a small constant
audio = audio / scaling_factor * 0.1
# Filter out values less than 0.01 from temp
temp = temp[temp > 0.01]
L = temp.shape[0] # Length of the filtered array
# If there are fewer than or equal to 10 significant values, return the audio without further processing
if L <= 10:
return audio
# Compute the average of the top 10% to 1% of values in temp
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
# Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
# Ensure the maximum absolute value in the audio does not exceed 1
max_value = np.max(np.abs(audio))
if max_value > 1:
audio = audio / max_value
return audio
def extract_mel_spectrogram(self, wav: np.ndarray, n_mels: int = 128,
n_fft: int = 1024, hop_length: int = 320,
win_length: int = 640) -> np.ndarray:
"""
提取梅尔频谱图
Args:
wav: 音频数据
n_mels: 梅尔滤波器组数量
n_fft: FFT窗口大小
hop_length: 帧移
win_length: 窗口长度
Returns:
梅尔频谱图
"""
mel_spec = librosa.feature.melspectrogram(
y=wav,
sr=self.sample_rate,
n_mels=n_mels,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
power=1,
norm="slaney",
fmin=10,
)
return mel_spec
def extract_wav2vec2_features(self, wav: np.ndarray) -> np.ndarray:
"""
使用ONNX wav2vec2模型提取特征,模拟BiCodecTokenizer的行为
Args:
wav: 音频数据
Returns:
特征向量
"""
# 检查wav2vec2模型是否已加载
if self.wav2vec2_session is None:
raise RuntimeError("wav2vec2模型未加载,请在初始化时提供wav2vec2_path参数")
# 添加batch维度
input_data = wav[np.newaxis, :].astype(np.float32) # [1, sequence_length]
# 运行wav2vec2推理
# 注意:这个ONNX模型已经包含了特征提取器的预处理和多个隐藏层的组合
inputs = {'input': input_data}
outputs = self.wav2vec2_session.run(None, inputs)
# 输出形状应该是 [1, time_steps, 1024]
# 这个输出已经是通过选择隐藏层11, 14, 16并计算平均值得到的
print(f'outputs: {outputs}')
print(f'outputs: {outputs[0].shape}')
features = outputs[0][0] # 移除batch维度,得到 [time_steps, 1024]
return features.astype(np.float32)
def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
"""
获取参考音频片段,与BiCodecTokenizer保持一致
Args:
wav: 原始音频数据
Returns:
参考音频片段
"""
# 使用与BiCodecTokenizer相同的计算方式
ref_segment_length = (
int(self.sample_rate * self.ref_segment_duration)
// self.latent_hop_length
* self.latent_hop_length
)
wav_length = len(wav)
if ref_segment_length > wav_length:
# 如果音频不足指定长度,重复音频直到达到要求
repeat_times = ref_segment_length // wav_length + 1
wav = np.tile(wav, repeat_times)
# 截取指定长度
return wav[:ref_segment_length]
def process_audio(self, audio_path: Union[str, Path], volume_normalize: bool = False) -> Tuple[np.ndarray, np.ndarray]:
"""
处理音频文件,返回原始音频和参考音频,与BiCodecTokenizer保持一致
Args:
audio_path: 音频文件路径
volume_normalize: 是否进行音量归一化
Returns:
(原始音频, 参考音频)
"""
wav = self.load_audio(audio_path, volume_normalize=volume_normalize)
ref_wav = self.get_ref_clip(wav)
return wav, ref_wav
def tokenize(self, audio_path: Union[str, Path]) -> Tuple[np.ndarray, np.ndarray]:
"""
使用ONNX模型生成tokens
Args:
audio_path: 音频文件路径
Returns:
(global_tokens, semantic_tokens)
"""
# 处理音频
wav, ref_wav = self.process_audio(audio_path)
# 提取特征
feat = self.extract_wav2vec2_features(wav)
ref_mel = self.extract_mel_spectrogram(ref_wav)
# 添加batch维度
ref_mel_input = ref_mel[np.newaxis, :, :].astype(np.float32) # [1, 128, 301]
feat_input = feat[np.newaxis, :, :].astype(np.float32) # [1, feat_len, 1024]
# 运行ONNX模型
inputs = {
'ref_wav_mel': ref_mel_input,
'feat': feat_input
}
outputs = self.ort_session.run(self.output_names, inputs)
# 解析输出
semantic_tokens = outputs[0] # 第一个输出
global_tokens = outputs[1] # 第二个输出
return global_tokens, semantic_tokens
def tokenize_batch(self, audio_paths: list) -> Tuple[list, list]:
"""
批量处理音频文件
Args:
audio_paths: 音频文件路径列表
Returns:
(global_tokens_list, semantic_tokens_list)
"""
global_tokens_list = []
semantic_tokens_list = []
for audio_path in audio_paths:
global_tokens, semantic_tokens = self.tokenize(audio_path)
global_tokens_list.append(global_tokens)
semantic_tokens_list.append(semantic_tokens)
return global_tokens_list, semantic_tokens_list
# 测试函数
def test_ref_audio_utilities():
"""测试RefAudioUtilities类"""
# 初始化工具类
onnx_model_path = '/Volumes/bigdata/models/RWKVTTS_WebRWKV/BiCodecTokenize.onnx'
wav2vec2_path = "/Volumes/bigdata/models/RWKVTTS_WebRWKV/wav2vec2-large-xlsr-53.onnx"
# 使用与BiCodecTokenizer相同的参数
utilities = RefAudioUtilities(
onnx_model_path,
wav2vec2_path,
ref_segment_duration=6.0, # 6秒参考音频
latent_hop_length=320 # 潜在特征跳长度
)
# 测试音频文件(使用项目中的示例音频)
test_audio_path = "demos/刘德华/dehua_zh.wav"
if Path(test_audio_path).exists():
print(f"测试音频文件: {test_audio_path}")
try:
# 生成tokens
global_tokens, semantic_tokens = utilities.tokenize(test_audio_path)
print(f"Global tokens shape: {global_tokens.shape}")
print(f"Semantic tokens shape: {semantic_tokens.shape}")
print(f"Global tokens: {global_tokens.flatten().tolist()}")
print(f"Semantic tokens : {semantic_tokens.flatten().tolist()}")
except Exception as e:
print(f"处理音频时出错: {e}")
else:
print(f"测试音频文件不存在: {test_audio_path}")
print("请确保测试音频文件存在")
if __name__ == "__main__":
test_ref_audio_utilities()
|