File size: 8,821 Bytes
acb8f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import json
import torch
import numpy as np
from transformers import AutoTokenizer
from properties_util import convert_standard_properties_to_tokens
def print_properties_info(age: str, gender: str, emotion: str, pitch: float, speed: float):
"""
打印属性信息的辅助函数
Args:
age: 年龄
gender: 性别
emotion: 情感
pitch: 音调
speed: 速度
"""
print(f'age: {age}, gender: {gender}, emotion: {emotion}, pitch: {pitch}, speed: {speed}')
@torch.inference_mode()
def extract_embeddings_for_global_tokens(model, tokenizer, text, age: str, gender: str, emotion: str, pitch: float, speed: float,global_tokens: list = None):
"""
提取生成全局tokens所需的embedding
Args:
model: 模型实例
tokenizer: 分词器
text: 输入文本
age: 年龄
gender: 性别
emotion: 情感
pitch: 音调
speed: 速度
global_tokens: 全局tokens
Returns:
torch.Tensor: 拼接后的完整embedding
"""
device = (next(model.parameters()).device)
properties_tokens = convert_standard_properties_to_tokens(age, gender, emotion, pitch, speed)
text_tokens = tokenizer.encode(text, add_special_tokens=False)
properties_tokens = tokenizer.encode(properties_tokens, add_special_tokens=False)
text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
properties_tokens_tensor = torch.tensor(properties_tokens, dtype=torch.long, device=device)
text_embs = model.text_embedder(text_tokens_tensor)
properties_embs = model.text_embedder(properties_tokens_tensor)
tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
full_embs_for_sample = torch.cat([
properties_embs,
tag_2_emb, text_embs, tag_0_emb,
], dim=0)
if global_tokens is not None:
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
global_embs = model.global_embedder(global_tokens_tensor)
full_embs_for_sample = torch.cat([
full_embs_for_sample,
global_embs,
tag_1_emb
], dim=0)
return full_embs_for_sample
def get_tokenizer(model_dir):
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
special_tokens = {
'pad_token': '<|rwkv_tokenizer_end_of_text|>',
'additional_special_tokens': [
'<|endofprompt|>',
'[breath]', '<strong>', '</strong>', '[noise]',
'[laughter]', '[cough]', '[clucking]', '[accent]',
'[quick_breath]',
"<laughter>", "</laughter>",
"[hissing]", "[sigh]", "[vocalized-noise]",
"[lipsmack]", "[mn]"
]
}
tokenizer.add_special_tokens(special_tokens)
return tokenizer
def get_respark_tts_tokenizer(model_dir):
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
original_vocab_size = tokenizer.vocab_size
added_tokens_file = os.path.join(os.path.dirname(__file__),'spark_tts_added_tokens.json')
with open(added_tokens_file, 'r') as f:
added_tokens = json.load(f)
tokenizer.add_special_tokens(added_tokens)
return tokenizer,original_vocab_size
@torch.inference_mode()
def generate_global_tokens(model, tokenizer, text, age: str, gender: str, emotion: str, pitch: float, speed: float,
num_global_tokens: int = 4096):
full_embs_for_sample = extract_embeddings_for_global_tokens(model, tokenizer, text, age, gender, emotion, pitch, speed)
device = full_embs_for_sample.device
vocab_size = model.config.vocab_size
eos_token_id = vocab_size - 1
suppress_tokens = [id for id in range(num_global_tokens,vocab_size)]
gen_args = {
"inputs_embeds":full_embs_for_sample.unsqueeze(0),
"attention_mask":torch.ones((1, full_embs_for_sample.shape[1]),dtype=torch.long,device=device),
"max_new_tokens":32,
"min_new_tokens":32,
"do_sample":True,
"top_k":50,
"top_p":0.95,
"temperature":1.0,
"eos_token_id":eos_token_id,
"pad_token_id":tokenizer.pad_token_id,
"use_cache":True,
"suppress_tokens":suppress_tokens,
"return_dict_in_generate":True,
}
generated_outputs = model.generate(**gen_args)
return generated_outputs
@torch.inference_mode()
def generate_input_embeddings(model,tokenizer,text,global_tokens):
device = (next(model.parameters()).device)
text_tokens = tokenizer.encode(text, add_special_tokens=False)
text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
text_embs = model.text_embedder(text_tokens_tensor)
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
global_embs = model.global_embedder(global_tokens_tensor)
tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
input_embs = torch.cat([tag_2_emb,text_embs,tag_0_emb,global_embs,tag_1_emb],dim=0)
return input_embs
def generate_embeddings(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None):
"""
为 Spark LLM 生成预测所需的输入嵌入
Args:
model: Spark LLM 模型
tokenizer: 文本分词器
text: 要生成语音的文本
bicodec: BiCodecTokenizer 实例
prompt_text: 提示文本(可选)
prompt_audio: 提示音频数组(可选)
Returns:
dict: 包含 input_embs 的字典,用于模型预测
"""
device = next(model.parameters()).device
# 1. 处理提示音频,提取 global_tokens 和 semantic_tokens
if prompt_audio is not None:
# 确保音频数据是 float32 类型
audio_data = np.array(prompt_audio, dtype=np.float32)
target_sample_rate = bicodec.config['sample_rate']
# 检查是否需要重采样
# 注意:这里假设 prompt_audio 已经是从 soundfile 加载的,采样率信息在外部处理
# BiCodecTokenizer 期望 16kHz 采样率的音频
print(f"BiCodecTokenizer 期望的采样率: {target_sample_rate}Hz")
print(f"音频数据形状: {audio_data.shape}")
# 使用 BiCodec 提取 tokens (返回顺序: global_tokens, semantic_tokens)
global_tokens, semantic_tokens = bicodec.tokenize(audio_data)
global_tokens = global_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
semantic_tokens = semantic_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
else:
global_tokens = []
semantic_tokens = []
# 2. 处理文本
if prompt_text is not None:
# 连接提示文本和目标文本
full_text = prompt_text + text
# 初始的 semantic tokens 等于 prompt_audio 提取的 semantic tokens
initial_semantic_tokens = semantic_tokens.copy()
else:
full_text = text
initial_semantic_tokens = []
# 3. 获取文本 tokens
text_tokens = tokenizer.encode(full_text, add_special_tokens=False)
# 4. 转换为张量
text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
semantic_tokens_tensor = torch.tensor(initial_semantic_tokens, dtype=torch.long, device=device)
# 5. 获取嵌入
text_embs = model.text_embedder(text_tokens_tensor)
global_embs = model.global_embedder(global_tokens_tensor)
semantic_embs = model.model.embeddings(semantic_tokens_tensor)
# 6. 获取特殊标记嵌入
tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
# 7. 连接嵌入
input_embs = torch.cat([
tag_2_emb,
text_embs,
tag_0_emb,
global_embs,
tag_1_emb,
semantic_embs
], dim=0)
# 8. 添加批次维度
input_embs = input_embs.unsqueeze(0) # [1, seq_len, hidden_size]
return {
"input_embs": input_embs,
"global_tokens": global_tokens_tensor,
} |