File size: 8,821 Bytes
acb8f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import json
import torch
import numpy as np
from transformers import AutoTokenizer
from properties_util import convert_standard_properties_to_tokens

def print_properties_info(age: str, gender: str, emotion: str, pitch: float, speed: float):
    """
    打印属性信息的辅助函数
    
    Args:
        age: 年龄
        gender: 性别
        emotion: 情感
        pitch: 音调
        speed: 速度
    """
    print(f'age: {age}, gender: {gender}, emotion: {emotion}, pitch: {pitch}, speed: {speed}')

@torch.inference_mode()
def extract_embeddings_for_global_tokens(model, tokenizer, text, age: str, gender: str, emotion: str, pitch: float, speed: float,global_tokens: list = None):
    """
    提取生成全局tokens所需的embedding
    
    Args:
        model: 模型实例
        tokenizer: 分词器
        text: 输入文本
        age: 年龄
        gender: 性别
        emotion: 情感
        pitch: 音调
        speed: 速度
        global_tokens: 全局tokens
    Returns:
        torch.Tensor: 拼接后的完整embedding
    """
    device = (next(model.parameters()).device) 
    properties_tokens = convert_standard_properties_to_tokens(age, gender, emotion, pitch, speed)
    text_tokens = tokenizer.encode(text, add_special_tokens=False)
    properties_tokens = tokenizer.encode(properties_tokens, add_special_tokens=False)
    text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
    properties_tokens_tensor = torch.tensor(properties_tokens, dtype=torch.long, device=device)
    text_embs = model.text_embedder(text_tokens_tensor)
    properties_embs = model.text_embedder(properties_tokens_tensor)
    tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
    tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
    tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
    full_embs_for_sample = torch.cat([
        properties_embs,
        tag_2_emb, text_embs, tag_0_emb,
    ], dim=0)
    if global_tokens is not None:
        global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
        global_embs = model.global_embedder(global_tokens_tensor)
        full_embs_for_sample = torch.cat([
            full_embs_for_sample,
            global_embs,
            tag_1_emb
        ], dim=0)
    return full_embs_for_sample

def get_tokenizer(model_dir):
    tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
    special_tokens = {
            'pad_token': '<|rwkv_tokenizer_end_of_text|>',
            'additional_special_tokens': [
                '<|endofprompt|>',
                '[breath]', '<strong>', '</strong>', '[noise]',
                '[laughter]', '[cough]', '[clucking]', '[accent]',
                '[quick_breath]',
                "<laughter>", "</laughter>",
                "[hissing]", "[sigh]", "[vocalized-noise]",
                "[lipsmack]", "[mn]"
            ]
        }
    tokenizer.add_special_tokens(special_tokens)
    return tokenizer

def get_respark_tts_tokenizer(model_dir):
    tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
    original_vocab_size = tokenizer.vocab_size
    added_tokens_file = os.path.join(os.path.dirname(__file__),'spark_tts_added_tokens.json')
    with open(added_tokens_file, 'r') as f:
        added_tokens = json.load(f)
    tokenizer.add_special_tokens(added_tokens)
    return tokenizer,original_vocab_size
@torch.inference_mode()
def generate_global_tokens(model, tokenizer, text, age: str, gender: str, emotion: str, pitch: float, speed: float,
                           num_global_tokens: int = 4096):
    full_embs_for_sample = extract_embeddings_for_global_tokens(model, tokenizer, text, age, gender, emotion, pitch, speed)
    device = full_embs_for_sample.device
    vocab_size = model.config.vocab_size
    eos_token_id = vocab_size - 1
    suppress_tokens = [id for id in range(num_global_tokens,vocab_size)]
    gen_args = {
        "inputs_embeds":full_embs_for_sample.unsqueeze(0),
        "attention_mask":torch.ones((1, full_embs_for_sample.shape[1]),dtype=torch.long,device=device),
        "max_new_tokens":32,
        "min_new_tokens":32,
        "do_sample":True,
        "top_k":50,
        "top_p":0.95,
        "temperature":1.0,
        "eos_token_id":eos_token_id,
        "pad_token_id":tokenizer.pad_token_id,
        "use_cache":True,
        "suppress_tokens":suppress_tokens,
        "return_dict_in_generate":True,
    }
    generated_outputs = model.generate(**gen_args)
    return generated_outputs
@torch.inference_mode()
def generate_input_embeddings(model,tokenizer,text,global_tokens):
    device = (next(model.parameters()).device) 
    text_tokens = tokenizer.encode(text, add_special_tokens=False)
    text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
    text_embs = model.text_embedder(text_tokens_tensor)
    global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
    global_embs = model.global_embedder(global_tokens_tensor)
    tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
    tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
    tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
    input_embs = torch.cat([tag_2_emb,text_embs,tag_0_emb,global_embs,tag_1_emb],dim=0)
    return input_embs

def generate_embeddings(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None):
    """
    为 Spark LLM 生成预测所需的输入嵌入
    
    Args:
        model: Spark LLM 模型
        tokenizer: 文本分词器
        text: 要生成语音的文本
        bicodec: BiCodecTokenizer 实例
        prompt_text: 提示文本(可选)
        prompt_audio: 提示音频数组(可选)
    
    Returns:
        dict: 包含 input_embs 的字典,用于模型预测
    """
    device = next(model.parameters()).device
    
    # 1. 处理提示音频,提取 global_tokens 和 semantic_tokens
    if prompt_audio is not None:
        # 确保音频数据是 float32 类型
        audio_data = np.array(prompt_audio, dtype=np.float32)
        target_sample_rate = bicodec.config['sample_rate']
        
        # 检查是否需要重采样
        # 注意:这里假设 prompt_audio 已经是从 soundfile 加载的,采样率信息在外部处理
        # BiCodecTokenizer 期望 16kHz 采样率的音频
        print(f"BiCodecTokenizer 期望的采样率: {target_sample_rate}Hz")
        print(f"音频数据形状: {audio_data.shape}")
        
        # 使用 BiCodec 提取 tokens (返回顺序: global_tokens, semantic_tokens)
        global_tokens, semantic_tokens = bicodec.tokenize(audio_data)
        global_tokens = global_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
        semantic_tokens = semantic_tokens.squeeze(0).squeeze(0).detach().cpu().tolist()
    else:
        global_tokens = []
        semantic_tokens = []
    
    # 2. 处理文本
    if prompt_text is not None:
        # 连接提示文本和目标文本
        full_text = prompt_text + text
        # 初始的 semantic tokens 等于 prompt_audio 提取的 semantic tokens
        initial_semantic_tokens = semantic_tokens.copy()
    else:
        full_text = text
        initial_semantic_tokens = []
    
    # 3. 获取文本 tokens
    text_tokens = tokenizer.encode(full_text, add_special_tokens=False)
    
    # 4. 转换为张量
    text_tokens_tensor = torch.tensor(text_tokens, dtype=torch.long, device=device)
    global_tokens_tensor = torch.tensor(global_tokens, dtype=torch.long, device=device)
    semantic_tokens_tensor = torch.tensor(initial_semantic_tokens, dtype=torch.long, device=device)
    
    # 5. 获取嵌入
    text_embs = model.text_embedder(text_tokens_tensor)
    global_embs = model.global_embedder(global_tokens_tensor)
    semantic_embs = model.model.embeddings(semantic_tokens_tensor)
    
    # 6. 获取特殊标记嵌入
    tag_0_emb = model.tts_tag_embedder(torch.tensor([0], dtype=torch.long, device=device))
    tag_1_emb = model.tts_tag_embedder(torch.tensor([1], dtype=torch.long, device=device))
    tag_2_emb = model.tts_tag_embedder(torch.tensor([2], dtype=torch.long, device=device))
    
    # 7. 连接嵌入
    input_embs = torch.cat([
        tag_2_emb, 
        text_embs, 
        tag_0_emb, 
        global_embs, 
        tag_1_emb, 
        semantic_embs
    ], dim=0)
    
    # 8. 添加批次维度
    input_embs = input_embs.unsqueeze(0)  # [1, seq_len, hidden_size]
    
    return {
        "input_embs": input_embs,
        "global_tokens": global_tokens_tensor,
    }