File size: 8,939 Bytes
acb8f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
import torch.nn as nn
from typing import Optional, Union, Tuple, Dict, Unpack
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils.deprecation import deprecate_kwarg
from rwkvfla.models.rwkv7.modeling_rwkv7 import RWKV7Model, RWKV7PreTrainedModel, Cache,RWKV7ForCausalLM
from rwkvfla.models.rwkv7.modeling_rwkv7 import FusedLinearCrossEntropyLoss, FusedCrossEntropyLoss
from transformers.generation.utils import GenerationMixin

from rwkvfla.models.rwkv7.configuration_rwkv7 import RWKV7Config

class RWKV7SpeechConfig(RWKV7Config):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.text_vocab_size = kwargs.get("text_vocab_size", kwargs.get("text_vocab_size"))
        self.audio_global_vocab_size = kwargs.get("audio_global_vocab_size", kwargs.get("audio_global_vocab_size"))


class RWKV7ForSpeech(RWKV7ForCausalLM):
    config_class = RWKV7SpeechConfig
    def __init__(self, config: RWKV7SpeechConfig):
        super().__init__(config)
        self.model = RWKV7Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)#Spark 0.5B vocab size is 8192 + 1 for eos resulting in 8193
        self.criterion = None
        self.text_embedder = nn.Embedding(config.text_vocab_size, config.hidden_size)
        self.global_embedder = nn.Embedding(config.audio_global_vocab_size, config.hidden_size)#Spark 0.5B global token size is 4096
        #TTS Tag includes GLOBAL=0, SEMANTIC=1,START_TTS=2
        self.tts_tag_embedder = nn.Embedding(3, config.hidden_size)
        # Initialize weights and apply final processing
        self.post_init()
        self.dropout = torch.nn.Dropout(0.02)

    def get_input_embeddings(self):
        return self.model.embeddings

    def set_input_embeddings(self, value):
        self.model.embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def generate(self, *args, **kwargs):
        try:
            return super().generate(*args, **kwargs)
        except AttributeError as exception:
            if 'past_key_values' in str(exception):
                raise AttributeError(
                    f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
                    f"which is not supported for {self.__class__.__name__}. "
                    f"Try another generation strategy instead. "
                    f"For the available generation strategies, check this doc: "
                    f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
                )
            else:
                raise exception

    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor = None,
        past_key_values: Optional[Cache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: bool = True,
        logits_to_keep: Optional[int] = None,
        **kwargs
    ):
        # only last token for `inputs_ids` if the `past_key_values` is not empty.
        if past_key_values is not None and len(past_key_values) > 0:
            input_ids = input_ids[:, -1:]
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and len(past_key_values) == 0:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard.
            # Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {'input_ids': input_ids.contiguous()}

        if logits_to_keep is not None:
            model_inputs['logits_to_keep'] = logits_to_keep

        model_inputs.update({
            'past_key_values': past_key_values,
            'use_cache': use_cache,
            'attention_mask': attention_mask,
            'logits_to_keep': logits_to_keep,
        })
        return model_inputs

    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        logits_to_keep: Optional[int] = 0,
        **kwargs: Unpack[Dict]
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if self.training and inputs_embeds is not None:
            inputs_embeds = self.dropout(inputs_embeds)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs
        )

        hidden_states = outputs[0]
        fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training

        loss, logits = None, None
        if not fuse_linear_and_cross_entropy or labels is None:
            logits = self.lm_head(hidden_states if logits_to_keep is None else hidden_states[:, -logits_to_keep:])
        if labels is not None:
            if getattr(self, 'criterion', None) is None:
                if fuse_linear_and_cross_entropy:
                    criterion = FusedLinearCrossEntropyLoss()
                elif self.config.fuse_cross_entropy:
                    criterion = FusedCrossEntropyLoss(inplace_backward=True)
                else:
                    criterion = nn.CrossEntropyLoss()
            else:
                criterion = self.criterion
            # Enable model parallelism
            labels = labels.to(hidden_states.device)
            labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], criterion.ignore_index)), 1)
            if fuse_linear_and_cross_entropy:
                loss = criterion(hidden_states, labels, self.lm_head.weight, self.lm_head.bias)
            else:
                loss = criterion(logits.view(labels.numel(), -1), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    def copy_state_dict(self, state_dict: dict):
        """从源 state dict 复制参数到当前模型,排除 embeddings 和 lm_head
        The state dict is from original RWKV7 language model
        Args:
            state_dict: 源 state dict
        """
        # 获取当前模型的 state dict
        target_dict = self.state_dict()
        
        # 创建新的 state dict 用于存储要复制的参数
        new_state_dict = {}
        
        # 遍历源 state dict 的键
        for key in state_dict.keys():
            # 跳过 embeddings 和 lm_head 相关的参数
            if key == 'model.embeddings.weight':
                new_state_dict['text_embedder.weight'] = state_dict[key]
                continue
            if 'embeddings' in key or 'lm_head' in key:
                continue
            # 如果键在当前模型中存在,则复制参数
            if key in target_dict:
                new_state_dict[key] = state_dict[key]
        
        # 加载新的 state dict 到当前模型
        info = self.load_state_dict(new_state_dict, strict=False)
        print(info)
        return self