--- license: mit library_name: pytorch tags: - Medical Vsion-Language Pre-Training - BenchX --- # PTUnifier Checkpoint Model Card A retrained PTUnifier model for benchmarking medical vision-language pre-training methods within the BenchX framework. ## Model Details - **Model Type**: PTUnifier - **Architecture**: CLIP-ViT-Base image encoder and RoBERTa-Base text encoder - **Original Papers**: [Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts](https://arxiv.org/abs/2302.08958) - **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969) - **Benchmark Framework**: https://github.com/yangzhou12/BenchX ## Intended Use - **Primary Use Cases**: - Benchmarking performance for Medical Image Classification - Benchmarking performance for Medical Image Segmentation - Benchmarking performance for Medical Report Generation ## Pre-Training Data - **Dataset**: - Data source(s): MIMIC-CXR - Types of medical images: Frontal chest X-rays - Text data type: Associated radiology reports ## Prerequisites Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX. ## Training & Evaluation ### 1. Classification Fine-tuning PTUnifier for classification is not supported yet. ### 2. Segmentation To fine-tune PTUnifier for segmentation, run this command: ``` python mmsegmentation/tools/train.py config/benchmark//ptunifier.yml ``` ### 3. Report Generation To fine-tune PTUnifier for report generation, run this command: ``` python bin/train.py config/report_generation//ptunifier.yml ``` ### 4. Evaluation To evaluate fine-tuned PTUnifier models, run: ``` # For classification and report generation python bin/test.py config///PTUnifier.yml validator.splits=[test] ckpt_dir= # For segmentation python mmsegmentation/tools/my_test.py mmsegmentation/config//ptunifier.yml ``` ## Citations ```bibtex @inproceedings{chen2023towards, title={Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts}, author={Chen, Zhihong and Diao, Shizhe and Wang, Benyou and Li, Guanbin and Wan, Xiang}, booktitle={Proceedings of ICCV}, pages={23403--23413}, year={2023}, } ``` ```bibtex @inproceedings{zhou2024benchx, title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays}, author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh}, booktitle={Proceedings of NeurIPS}, year={2024} } ```