Delete configuration_resnet.py
Browse files- configuration_resnet.py +0 -35
configuration_resnet.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
from transformers import PretrainedConfig
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
|
5 |
-
class ResnetConfig(PretrainedConfig):
|
6 |
-
model_type = "resnet"
|
7 |
-
|
8 |
-
def __init__(
|
9 |
-
self,
|
10 |
-
block_type="bottleneck",
|
11 |
-
layers: List[int] = [3, 4, 6, 3],
|
12 |
-
num_classes: int = 1000,
|
13 |
-
input_channels: int = 3,
|
14 |
-
cardinality: int = 1,
|
15 |
-
base_width: int = 64,
|
16 |
-
stem_width: int = 64,
|
17 |
-
stem_type: str = "",
|
18 |
-
avg_down: bool = False,
|
19 |
-
**kwargs,
|
20 |
-
):
|
21 |
-
if block_type not in ["basic", "bottleneck"]:
|
22 |
-
raise ValueError(f"`block` must be 'basic' or bottleneck', got {block}.")
|
23 |
-
if stem_type not in ["", "deep", "deep-tiered"]:
|
24 |
-
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {block}.")
|
25 |
-
|
26 |
-
self.block_type = block_type
|
27 |
-
self.layers = layers
|
28 |
-
self.num_classes = num_classes
|
29 |
-
self.input_channels = input_channels
|
30 |
-
self.cardinality = cardinality
|
31 |
-
self.base_width = base_width
|
32 |
-
self.stem_width = stem_width
|
33 |
-
self.stem_type = stem_type
|
34 |
-
self.avg_down = avg_down
|
35 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|