Yuning You
commited on
Commit
·
a9af6e4
1
Parent(s):
89847a2
update
Browse files- README.md +9 -2
- test.ipynb +11 -0
README.md
CHANGED
@@ -21,7 +21,7 @@ The current version of CI-FM has 138M parameters and is trained on around 23M ce
|
|
21 |
The detailed usage of the model can be found in the [tutorial](https://huggingface.co/ynyou/CIFM/blob/main/test.ipynb).
|
22 |
Before running the tutorial, please set up an environment following the [environment instruction](https://huggingface.co/ynyou/CIFM#environment).
|
23 |
|
24 |
-
More information about the model can be found in the [preprint]().
|
25 |
|
26 |

|
27 |

|
@@ -57,5 +57,12 @@ pip install torch-scatter torch-sparse torch-cluster torch-geometric -f https://
|
|
57 |
## Citation
|
58 |
If you use this code for you research, please cite our paper.
|
59 |
```
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
```
|
|
|
21 |
The detailed usage of the model can be found in the [tutorial](https://huggingface.co/ynyou/CIFM/blob/main/test.ipynb).
|
22 |
Before running the tutorial, please set up an environment following the [environment instruction](https://huggingface.co/ynyou/CIFM#environment).
|
23 |
|
24 |
+
More information about the model can be found in the [preprint](https://www.biorxiv.org/content/10.1101/2025.01.25.634867v1).
|
25 |
|
26 |

|
27 |

|
|
|
57 |
## Citation
|
58 |
If you use this code for you research, please cite our paper.
|
59 |
```
|
60 |
+
@misc{you2025cifm,
|
61 |
+
title={Building Foundation Models to Characterize Cellular Interactions via Geometric Self-Supervised Learning on Spatial Genomics},
|
62 |
+
author={You, Yuning and Wang, Zitong and Fleisher, Kevin and Liu, Rex and Thomson, Matt},
|
63 |
+
year={2025},
|
64 |
+
elocation-id = {2025.01.25.634867},
|
65 |
+
archivePrefix={bioRxiv},
|
66 |
+
url={https://www.biorxiv.org/content/early/2025/01/27/2025.01.25.634867},
|
67 |
+
}
|
68 |
```
|
test.ipynb
CHANGED
@@ -257,6 +257,17 @@
|
|
257 |
" expressions = model.predict_cells_at_locations(adata, target_locs)\n",
|
258 |
"expressions, expressions.shape"
|
259 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
}
|
261 |
],
|
262 |
"metadata": {
|
|
|
257 |
" expressions = model.predict_cells_at_locations(adata, target_locs)\n",
|
258 |
"expressions, expressions.shape"
|
259 |
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": null,
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"# you can convert it into normalize counts\n",
|
268 |
+
"counts_normalized = np.exp(expressions) - 1\n",
|
269 |
+
"counts_normalized = counts_normalized / counts_normalized.sum(axis=1, keepdims=True)"
|
270 |
+
]
|
271 |
}
|
272 |
],
|
273 |
"metadata": {
|