Yuning You
commited on
Commit
·
4981657
1
Parent(s):
0036d26
update
Browse files- .gitattributes +1 -0
- README.md +3 -3
- figures/autoregressive.gif +0 -0
- figures/cifm.png +0 -0
- models_cifm/cifm.py +2 -1
- test.ipynb +47 -89
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
adata.h5ad filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
adata.h5ad filter=lfs diff=lfs merge=lfs -text
|
37 |
+
figures/cifm.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -10,11 +10,11 @@ tags:
|
|
10 |
- Library: ynyou/CIFM
|
11 |
- Docs: [More Information Needed] -->
|
12 |
|
13 |
-
#
|
14 |
|
15 |
## Overview
|
16 |
-
This is the PyTorch implementation of the
|
17 |
-
The current version of
|
18 |
- **Embedding** of celllular microenvironments via ```embeddings = model.embed(adata)``` (the 1st Figure below panel D top);
|
19 |
- **Inference/simulation** of cellular gene expressions within a certain microenvironment via ```expressions = model.predict_cells_at_locations(adata, target_locs)``` (the 1st Figure below panel D bottom, and the 2nd Figure below).
|
20 |
|
|
|
10 |
- Library: ynyou/CIFM
|
11 |
- Docs: [More Information Needed] -->
|
12 |
|
13 |
+
# CIFM: Cellular Interaction Foundation Model
|
14 |
|
15 |
## Overview
|
16 |
+
This is the PyTorch implementation of the CIFM model -- an AI model that can simulate the activities within a living tissue (AI virtual tissue).
|
17 |
+
The current version of CIFM has 138M parameters and is trained on around 23M cells of spatial genomics. The signature functions of CIFM are:
|
18 |
- **Embedding** of celllular microenvironments via ```embeddings = model.embed(adata)``` (the 1st Figure below panel D top);
|
19 |
- **Inference/simulation** of cellular gene expressions within a certain microenvironment via ```expressions = model.predict_cells_at_locations(adata, target_locs)``` (the 1st Figure below panel D bottom, and the 2nd Figure below).
|
20 |
|
figures/autoregressive.gif
CHANGED
![]() |
![]() |
figures/cifm.png
CHANGED
![]() |
![]() |
Git LFS Details
|
models_cifm/cifm.py
CHANGED
@@ -19,12 +19,13 @@ class CIFM(
|
|
19 |
super().__init__()
|
20 |
self.gene_encoder = MLPBiasFree(in_dim=args.in_dim, out_dim=args.hidden_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
21 |
self.model = VIEGNNModel(num_layers=args.num_layer, num_mlp_layers_in_module=args.num_mlp_layers_in_module,
|
22 |
-
emb_dim=args.hidden_dim, in_dim=args.hidden_dim, out_dim=args.hidden_dim, residual=
|
23 |
self.mask_cell_decoder = VIEGNNModel(num_layers=args.num_layer, num_mlp_layers_in_module=args.num_mlp_layers_in_module,
|
24 |
emb_dim=args.hidden_dim, in_dim=args.hidden_dim, out_dim=args.hidden_dim, residual=False)
|
25 |
self.mask_cell_expression = MLPBiasFree(in_dim=args.hidden_dim, out_dim=args.in_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
26 |
self.mask_cell_dropout = MLPBiasFree(in_dim=args.hidden_dim, out_dim=args.in_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
27 |
self.mask_embedding = nn.Embedding(1, args.hidden_dim)
|
|
|
28 |
|
29 |
self.relu = nn.ReLU()
|
30 |
self.sigmoid = nn.Sigmoid()
|
|
|
19 |
super().__init__()
|
20 |
self.gene_encoder = MLPBiasFree(in_dim=args.in_dim, out_dim=args.hidden_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
21 |
self.model = VIEGNNModel(num_layers=args.num_layer, num_mlp_layers_in_module=args.num_mlp_layers_in_module,
|
22 |
+
emb_dim=args.hidden_dim, in_dim=args.hidden_dim, out_dim=args.hidden_dim, residual=False)
|
23 |
self.mask_cell_decoder = VIEGNNModel(num_layers=args.num_layer, num_mlp_layers_in_module=args.num_mlp_layers_in_module,
|
24 |
emb_dim=args.hidden_dim, in_dim=args.hidden_dim, out_dim=args.hidden_dim, residual=False)
|
25 |
self.mask_cell_expression = MLPBiasFree(in_dim=args.hidden_dim, out_dim=args.in_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
26 |
self.mask_cell_dropout = MLPBiasFree(in_dim=args.hidden_dim, out_dim=args.in_dim, hidden_dim=args.hidden_dim, num_layer=args.num_mlp_layers_in_module)
|
27 |
self.mask_embedding = nn.Embedding(1, args.hidden_dim)
|
28 |
+
self.proj = MLPBiasFree(in_dim=args.hidden_dim, out_dim=1, hidden_dim=args.hidden_dim, num_layer=4)
|
29 |
|
30 |
self.relu = nn.ReLU()
|
31 |
self.sigmoid = nn.Sigmoid()
|
test.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -21,82 +21,22 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"metadata": {},
|
26 |
"outputs": [
|
27 |
{
|
28 |
"data": {
|
|
|
|
|
|
|
|
|
|
|
29 |
"text/plain": [
|
30 |
-
"
|
31 |
-
" (gene_encoder): MLPBiasFree(\n",
|
32 |
-
" (layers): ModuleList(\n",
|
33 |
-
" (0): Linear(in_features=18289, out_features=1024, bias=False)\n",
|
34 |
-
" (1-3): 3 x Linear(in_features=1024, out_features=1024, bias=False)\n",
|
35 |
-
" )\n",
|
36 |
-
" (layernorms): ModuleList(\n",
|
37 |
-
" (0-2): 3 x LayerNorm((1024,), eps=1e-05, elementwise_affine=False)\n",
|
38 |
-
" )\n",
|
39 |
-
" (activation): ReLU()\n",
|
40 |
-
" )\n",
|
41 |
-
" (model): VIEGNNModel(\n",
|
42 |
-
" (emb_in): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
43 |
-
" (convs): ModuleList(\n",
|
44 |
-
" (0-1): 2 x EGNNLayer(emb_dim=1024, aggr=sum)\n",
|
45 |
-
" )\n",
|
46 |
-
" (pred): MLPBiasFree(\n",
|
47 |
-
" (layers): ModuleList(\n",
|
48 |
-
" (0-3): 4 x Linear(in_features=1024, out_features=1024, bias=False)\n",
|
49 |
-
" )\n",
|
50 |
-
" (layernorms): ModuleList(\n",
|
51 |
-
" (0-2): 3 x LayerNorm((1024,), eps=1e-05, elementwise_affine=False)\n",
|
52 |
-
" )\n",
|
53 |
-
" (activation): ReLU()\n",
|
54 |
-
" )\n",
|
55 |
-
" )\n",
|
56 |
-
" (mask_cell_decoder): VIEGNNModel(\n",
|
57 |
-
" (emb_in): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
58 |
-
" (convs): ModuleList(\n",
|
59 |
-
" (0-1): 2 x EGNNLayer(emb_dim=1024, aggr=sum)\n",
|
60 |
-
" )\n",
|
61 |
-
" (pred): MLPBiasFree(\n",
|
62 |
-
" (layers): ModuleList(\n",
|
63 |
-
" (0-3): 4 x Linear(in_features=1024, out_features=1024, bias=False)\n",
|
64 |
-
" )\n",
|
65 |
-
" (layernorms): ModuleList(\n",
|
66 |
-
" (0-2): 3 x LayerNorm((1024,), eps=1e-05, elementwise_affine=False)\n",
|
67 |
-
" )\n",
|
68 |
-
" (activation): ReLU()\n",
|
69 |
-
" )\n",
|
70 |
-
" )\n",
|
71 |
-
" (mask_cell_expression): MLPBiasFree(\n",
|
72 |
-
" (layers): ModuleList(\n",
|
73 |
-
" (0-2): 3 x Linear(in_features=1024, out_features=1024, bias=False)\n",
|
74 |
-
" (3): Linear(in_features=1024, out_features=18289, bias=False)\n",
|
75 |
-
" )\n",
|
76 |
-
" (layernorms): ModuleList(\n",
|
77 |
-
" (0-2): 3 x LayerNorm((1024,), eps=1e-05, elementwise_affine=False)\n",
|
78 |
-
" )\n",
|
79 |
-
" (activation): ReLU()\n",
|
80 |
-
" )\n",
|
81 |
-
" (mask_cell_dropout): MLPBiasFree(\n",
|
82 |
-
" (layers): ModuleList(\n",
|
83 |
-
" (0-2): 3 x Linear(in_features=1024, out_features=1024, bias=False)\n",
|
84 |
-
" (3): Linear(in_features=1024, out_features=18289, bias=False)\n",
|
85 |
-
" )\n",
|
86 |
-
" (layernorms): ModuleList(\n",
|
87 |
-
" (0-2): 3 x LayerNorm((1024,), eps=1e-05, elementwise_affine=False)\n",
|
88 |
-
" )\n",
|
89 |
-
" (activation): ReLU()\n",
|
90 |
-
" )\n",
|
91 |
-
" (mask_embedding): Embedding(1, 1024)\n",
|
92 |
-
" (relu): ReLU()\n",
|
93 |
-
" (sigmoid): Sigmoid()\n",
|
94 |
-
")"
|
95 |
]
|
96 |
},
|
97 |
-
"execution_count": 2,
|
98 |
"metadata": {},
|
99 |
-
"output_type": "
|
100 |
}
|
101 |
],
|
102 |
"source": [
|
@@ -123,7 +63,7 @@
|
|
123 |
},
|
124 |
{
|
125 |
"cell_type": "code",
|
126 |
-
"execution_count":
|
127 |
"metadata": {},
|
128 |
"outputs": [
|
129 |
{
|
@@ -145,7 +85,7 @@
|
|
145 |
"source": [
|
146 |
"adata = sc.read_h5ad('./adata.h5ad')\n",
|
147 |
"adata.layers['counts'] = adata.X.copy()\n",
|
148 |
-
"sc.pp.normalize_total(adata)\n",
|
149 |
"sc.pp.log1p(adata)\n",
|
150 |
"adata"
|
151 |
]
|
@@ -163,14 +103,14 @@
|
|
163 |
},
|
164 |
{
|
165 |
"cell_type": "code",
|
166 |
-
"execution_count":
|
167 |
"metadata": {},
|
168 |
"outputs": [
|
169 |
{
|
170 |
"name": "stdout",
|
171 |
"output_type": "stream",
|
172 |
"text": [
|
173 |
-
"matching 18289 gene channels out of 18289 unmatched channels: []\n"
|
174 |
]
|
175 |
}
|
176 |
],
|
@@ -194,14 +134,14 @@
|
|
194 |
{
|
195 |
"data": {
|
196 |
"text/plain": [
|
197 |
-
"(tensor([[-0.
|
198 |
-
" [ 0.
|
199 |
-
" [-0.
|
200 |
" ...,\n",
|
201 |
-
" [
|
202 |
-
" [
|
203 |
-
" [-
|
204 |
-
" torch.Size([
|
205 |
]
|
206 |
},
|
207 |
"execution_count": 5,
|
@@ -224,23 +164,23 @@
|
|
224 |
},
|
225 |
{
|
226 |
"cell_type": "code",
|
227 |
-
"execution_count":
|
228 |
"metadata": {},
|
229 |
"outputs": [
|
230 |
{
|
231 |
"data": {
|
232 |
"text/plain": [
|
233 |
-
"(tensor([[0.0000, 0.0000,
|
234 |
-
" [0.0000, 0.0000,
|
235 |
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
236 |
" ...,\n",
|
237 |
-
" [0.0000, 0.0000,
|
238 |
-
" [0.
|
239 |
-
" [0.
|
240 |
" torch.Size([10, 18289]))"
|
241 |
]
|
242 |
},
|
243 |
-
"execution_count":
|
244 |
"metadata": {},
|
245 |
"output_type": "execute_result"
|
246 |
}
|
@@ -260,9 +200,27 @@
|
|
260 |
},
|
261 |
{
|
262 |
"cell_type": "code",
|
263 |
-
"execution_count":
|
264 |
"metadata": {},
|
265 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
"source": [
|
267 |
"# you can convert it into normalize counts\n",
|
268 |
"counts_normalized = np.exp(expressions) - 1\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
"metadata": {},
|
26 |
"outputs": [
|
27 |
{
|
28 |
"data": {
|
29 |
+
"application/vnd.jupyter.widget-view+json": {
|
30 |
+
"model_id": "18d58ba0049e4560b7bd0916fbd6ea33",
|
31 |
+
"version_major": 2,
|
32 |
+
"version_minor": 0
|
33 |
+
},
|
34 |
"text/plain": [
|
35 |
+
"model.safetensors: 0%| | 0.00/569M [00:00<?, ?B/s]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
]
|
37 |
},
|
|
|
38 |
"metadata": {},
|
39 |
+
"output_type": "display_data"
|
40 |
}
|
41 |
],
|
42 |
"source": [
|
|
|
63 |
},
|
64 |
{
|
65 |
"cell_type": "code",
|
66 |
+
"execution_count": 3,
|
67 |
"metadata": {},
|
68 |
"outputs": [
|
69 |
{
|
|
|
85 |
"source": [
|
86 |
"adata = sc.read_h5ad('./adata.h5ad')\n",
|
87 |
"adata.layers['counts'] = adata.X.copy()\n",
|
88 |
+
"sc.pp.normalize_total(adata, target_sum=1e4)\n",
|
89 |
"sc.pp.log1p(adata)\n",
|
90 |
"adata"
|
91 |
]
|
|
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "code",
|
106 |
+
"execution_count": 4,
|
107 |
"metadata": {},
|
108 |
"outputs": [
|
109 |
{
|
110 |
"name": "stdout",
|
111 |
"output_type": "stream",
|
112 |
"text": [
|
113 |
+
"matching 18289 gene channels out of 18289 ; unmatched channels: []\n"
|
114 |
]
|
115 |
}
|
116 |
],
|
|
|
134 |
{
|
135 |
"data": {
|
136 |
"text/plain": [
|
137 |
+
"(tensor([[-0.4326, -0.8625, 0.1121, ..., 0.4980, 0.3855, -0.1965],\n",
|
138 |
+
" [-0.6833, -0.9950, 0.1927, ..., -0.2064, 0.6193, 0.0387],\n",
|
139 |
+
" [-0.2099, -0.9877, 0.3462, ..., 0.2102, 0.6807, -0.2155],\n",
|
140 |
" ...,\n",
|
141 |
+
" [-0.0187, -0.8444, 0.3058, ..., 0.1030, 0.8362, -0.1859],\n",
|
142 |
+
" [-0.5535, -0.8201, 0.7805, ..., -0.1402, 0.5221, -0.3520],\n",
|
143 |
+
" [-0.9339, -0.8467, 0.0600, ..., 0.0406, 0.3608, 0.3418]]),\n",
|
144 |
+
" torch.Size([24844, 1024]))"
|
145 |
]
|
146 |
},
|
147 |
"execution_count": 5,
|
|
|
164 |
},
|
165 |
{
|
166 |
"cell_type": "code",
|
167 |
+
"execution_count": 6,
|
168 |
"metadata": {},
|
169 |
"outputs": [
|
170 |
{
|
171 |
"data": {
|
172 |
"text/plain": [
|
173 |
+
"(tensor([[0.0000, 0.0000, 2.8781, ..., 0.0000, 0.0000, 0.0000],\n",
|
174 |
+
" [0.0000, 0.0000, 2.9699, ..., 0.0000, 0.0000, 0.0000],\n",
|
175 |
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
176 |
" ...,\n",
|
177 |
+
" [0.0000, 0.0000, 3.2570, ..., 0.0000, 0.0000, 0.0000],\n",
|
178 |
+
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
179 |
+
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]),\n",
|
180 |
" torch.Size([10, 18289]))"
|
181 |
]
|
182 |
},
|
183 |
+
"execution_count": 6,
|
184 |
"metadata": {},
|
185 |
"output_type": "execute_result"
|
186 |
}
|
|
|
200 |
},
|
201 |
{
|
202 |
"cell_type": "code",
|
203 |
+
"execution_count": 7,
|
204 |
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"data": {
|
208 |
+
"text/plain": [
|
209 |
+
"(tensor([[0.0000, 0.0000, 0.0002, ..., 0.0000, 0.0000, 0.0000],\n",
|
210 |
+
" [0.0000, 0.0000, 0.0002, ..., 0.0000, 0.0000, 0.0000],\n",
|
211 |
+
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
212 |
+
" ...,\n",
|
213 |
+
" [0.0000, 0.0000, 0.0003, ..., 0.0000, 0.0000, 0.0000],\n",
|
214 |
+
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
215 |
+
" [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]),\n",
|
216 |
+
" torch.Size([10, 18289]))"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
"execution_count": 7,
|
220 |
+
"metadata": {},
|
221 |
+
"output_type": "execute_result"
|
222 |
+
}
|
223 |
+
],
|
224 |
"source": [
|
225 |
"# you can convert it into normalize counts\n",
|
226 |
"counts_normalized = np.exp(expressions) - 1\n",
|