File size: 2,106 Bytes
f3422b5 d58c6c2 f3422b5 d58c6c2 f3422b5 d58c6c2 f3422b5 d3e5c2a f3422b5 d3e5c2a f3422b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-bert-CV16-en-libri
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-bert-CV16-en-libri
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the LIBRISPEECH_ASR - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1331
- Wer: 0.0997
- Cer: 0.0264
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 72
- total_eval_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 2.8812 | 0.63 | 250 | 1.0000 | 2.8923 | 1.0 |
| 1.2899 | 1.26 | 500 | 0.2563 | 1.1471 | 0.7030 |
| 0.5276 | 1.89 | 750 | 0.1127 | 0.4687 | 0.4114 |
| 0.3313 | 2.52 | 1000 | 0.0659 | 0.2870 | 0.2577 |
| 0.2089 | 3.16 | 1250 | 0.2079 | 0.1766 | 0.0445 |
| 0.1634 | 3.79 | 1500 | 0.1687 | 0.1411 | 0.0366 |
| 0.163 | 4.42 | 1750 | 0.1490 | 0.1163 | 0.0298 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|