Training in progress, step 150
Browse files- .ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
- Untitled.ipynb +296 -0
- adapter_model.safetensors +1 -1
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
Untitled.ipynb
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "bab68ed2-639c-4494-a0db-8a09169ba276",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"π H200 GPU Monitor Ready!\n",
|
14 |
+
"\n",
|
15 |
+
"Usage:\n",
|
16 |
+
"quick_check() # One-time status check\n",
|
17 |
+
"monitor_gpu(30, 2) # Monitor for 30 minutes, refresh every 2 seconds\n",
|
18 |
+
"monitor_gpu(60) # Monitor for 1 hour with default settings\n"
|
19 |
+
]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"source": [
|
23 |
+
"import subprocess\n",
|
24 |
+
"import time\n",
|
25 |
+
"import json\n",
|
26 |
+
"import pandas as pd\n",
|
27 |
+
"from IPython.display import display, clear_output\n",
|
28 |
+
"import matplotlib.pyplot as plt\n",
|
29 |
+
"from datetime import datetime\n",
|
30 |
+
"\n",
|
31 |
+
"def get_gpu_stats():\n",
|
32 |
+
" \"\"\"Get comprehensive GPU statistics\"\"\"\n",
|
33 |
+
" try:\n",
|
34 |
+
" # Get GPU stats using nvidia-smi\n",
|
35 |
+
" result = subprocess.run([\n",
|
36 |
+
" 'nvidia-smi', '--query-gpu=index,name,utilization.gpu,utilization.memory,memory.used,memory.total,temperature.gpu,power.draw,power.limit',\n",
|
37 |
+
" '--format=csv,noheader,nounits'\n",
|
38 |
+
" ], capture_output=True, text=True, check=True)\n",
|
39 |
+
" \n",
|
40 |
+
" lines = result.stdout.strip().split('\\n')\n",
|
41 |
+
" gpu_data = []\n",
|
42 |
+
" \n",
|
43 |
+
" for line in lines:\n",
|
44 |
+
" parts = [part.strip() for part in line.split(',')]\n",
|
45 |
+
" if len(parts) >= 9:\n",
|
46 |
+
" gpu_data.append({\n",
|
47 |
+
" 'GPU': int(parts[0]),\n",
|
48 |
+
" 'Name': parts[1],\n",
|
49 |
+
" 'GPU_Util_%': float(parts[2]) if parts[2] != '[Not Supported]' else 0,\n",
|
50 |
+
" 'Mem_Util_%': float(parts[3]) if parts[3] != '[Not Supported]' else 0,\n",
|
51 |
+
" 'Mem_Used_MB': float(parts[4]),\n",
|
52 |
+
" 'Mem_Total_MB': float(parts[5]),\n",
|
53 |
+
" 'Temp_C': float(parts[6]) if parts[6] != '[Not Supported]' else 0,\n",
|
54 |
+
" 'Power_W': float(parts[7]) if parts[7] != '[Not Supported]' else 0,\n",
|
55 |
+
" 'Power_Limit_W': float(parts[8]) if parts[8] != '[Not Supported]' else 0\n",
|
56 |
+
" })\n",
|
57 |
+
" \n",
|
58 |
+
" return gpu_data\n",
|
59 |
+
" except Exception as e:\n",
|
60 |
+
" print(f\"Error getting GPU stats: {e}\")\n",
|
61 |
+
" return []\n",
|
62 |
+
"\n",
|
63 |
+
"def monitor_gpu(duration_minutes=60, refresh_seconds=2):\n",
|
64 |
+
" \"\"\"Monitor GPU utilization in real-time\"\"\"\n",
|
65 |
+
" \n",
|
66 |
+
" print(\"π GPU Utilization Monitor - H200 Training Analysis\")\n",
|
67 |
+
" print(\"=\" * 70)\n",
|
68 |
+
" \n",
|
69 |
+
" start_time = time.time()\n",
|
70 |
+
" end_time = start_time + (duration_minutes * 60)\n",
|
71 |
+
" \n",
|
72 |
+
" # Store history for plotting\n",
|
73 |
+
" history = []\n",
|
74 |
+
" \n",
|
75 |
+
" try:\n",
|
76 |
+
" while time.time() < end_time:\n",
|
77 |
+
" clear_output(wait=True)\n",
|
78 |
+
" \n",
|
79 |
+
" # Get current stats\n",
|
80 |
+
" gpu_stats = get_gpu_stats()\n",
|
81 |
+
" timestamp = datetime.now()\n",
|
82 |
+
" \n",
|
83 |
+
" if gpu_stats:\n",
|
84 |
+
" # Add to history\n",
|
85 |
+
" for gpu in gpu_stats:\n",
|
86 |
+
" gpu['timestamp'] = timestamp\n",
|
87 |
+
" history.append(gpu.copy())\n",
|
88 |
+
" \n",
|
89 |
+
" # Display current stats\n",
|
90 |
+
" print(\"π GPU Utilization Monitor - H200 Training Analysis\")\n",
|
91 |
+
" print(\"=\" * 70)\n",
|
92 |
+
" print(f\"β° Monitoring Time: {(time.time() - start_time)/60:.1f}/{duration_minutes} minutes\")\n",
|
93 |
+
" print(f\"π Current Time: {timestamp.strftime('%H:%M:%S')}\")\n",
|
94 |
+
" print()\n",
|
95 |
+
" \n",
|
96 |
+
" for gpu in gpu_stats:\n",
|
97 |
+
" name = gpu['Name']\n",
|
98 |
+
" gpu_util = gpu['GPU_Util_%']\n",
|
99 |
+
" mem_used = gpu['Mem_Used_MB'] / 1024 # Convert to GB\n",
|
100 |
+
" mem_total = gpu['Mem_Total_MB'] / 1024\n",
|
101 |
+
" mem_percent = (mem_used / mem_total) * 100\n",
|
102 |
+
" temp = gpu['Temp_C']\n",
|
103 |
+
" power = gpu['Power_W']\n",
|
104 |
+
" power_limit = gpu['Power_Limit_W']\n",
|
105 |
+
" power_percent = (power / power_limit) * 100 if power_limit > 0 else 0\n",
|
106 |
+
" \n",
|
107 |
+
" print(f\"π₯ GPU {gpu['GPU']}: {name}\")\n",
|
108 |
+
" print(f\" π» Compute Utilization: {gpu_util:6.1f}% {'π’' if gpu_util > 90 else 'π‘' if gpu_util > 70 else 'π΄'}\")\n",
|
109 |
+
" print(f\" π§ Memory: {mem_used:6.1f}GB / {mem_total:6.1f}GB ({mem_percent:5.1f}%) {'π’' if mem_percent > 95 else 'π‘' if mem_percent > 80 else 'π΄'}\")\n",
|
110 |
+
" print(f\" π‘οΈ Temperature: {temp:5.1f}Β°C {'π’' if temp < 80 else 'π‘' if temp < 90 else 'π΄'}\")\n",
|
111 |
+
" print(f\" β‘ Power: {power:6.1f}W / {power_limit:6.1f}W ({power_percent:5.1f}%) {'π’' if power_percent > 80 else 'π‘' if power_percent > 60 else 'π΄'}\")\n",
|
112 |
+
" print()\n",
|
113 |
+
" \n",
|
114 |
+
" # Analysis\n",
|
115 |
+
" avg_gpu_util = sum(gpu['GPU_Util_%'] for gpu in gpu_stats) / len(gpu_stats)\n",
|
116 |
+
" avg_mem_util = sum((gpu['Mem_Used_MB']/gpu['Mem_Total_MB'])*100 for gpu in gpu_stats) / len(gpu_stats)\n",
|
117 |
+
" \n",
|
118 |
+
" print(\"π UTILIZATION ANALYSIS:\")\n",
|
119 |
+
" if avg_gpu_util > 90 and avg_mem_util > 95:\n",
|
120 |
+
" print(\" β
EXCELLENT: GPU is fully utilized!\")\n",
|
121 |
+
" elif avg_gpu_util > 70 and avg_mem_util > 80:\n",
|
122 |
+
" print(\" β οΈ GOOD: GPU is well utilized but could be optimized\")\n",
|
123 |
+
" else:\n",
|
124 |
+
" print(\" β UNDERUTILIZED: GPU has significant unused capacity\")\n",
|
125 |
+
" \n",
|
126 |
+
" print(f\" π Average GPU Compute: {avg_gpu_util:.1f}%\")\n",
|
127 |
+
" print(f\" πΎ Average Memory Usage: {avg_mem_util:.1f}%\")\n",
|
128 |
+
" \n",
|
129 |
+
" # Training efficiency indicators\n",
|
130 |
+
" if avg_gpu_util < 70:\n",
|
131 |
+
" print(\"\\nπ§ OPTIMIZATION SUGGESTIONS:\")\n",
|
132 |
+
" print(\" β’ Increase batch size\")\n",
|
133 |
+
" print(\" β’ Reduce gradient accumulation steps\")\n",
|
134 |
+
" print(\" β’ Check if CPU is bottlenecking data loading\")\n",
|
135 |
+
" print(\" β’ Increase dataloader workers\")\n",
|
136 |
+
" \n",
|
137 |
+
" # Keep only last 100 data points for plotting\n",
|
138 |
+
" if len(history) > 100:\n",
|
139 |
+
" history = history[-100:]\n",
|
140 |
+
" \n",
|
141 |
+
" else:\n",
|
142 |
+
" print(\"β Could not retrieve GPU statistics\")\n",
|
143 |
+
" \n",
|
144 |
+
" time.sleep(refresh_seconds)\n",
|
145 |
+
" \n",
|
146 |
+
" except KeyboardInterrupt:\n",
|
147 |
+
" print(\"\\nβΉοΈ Monitoring stopped by user\")\n",
|
148 |
+
" \n",
|
149 |
+
" # Plot summary if we have history\n",
|
150 |
+
" if len(history) > 5:\n",
|
151 |
+
" plot_utilization_summary(history)\n",
|
152 |
+
"\n",
|
153 |
+
"def plot_utilization_summary(history):\n",
|
154 |
+
" \"\"\"Plot utilization summary\"\"\"\n",
|
155 |
+
" clear_output(wait=True)\n",
|
156 |
+
" \n",
|
157 |
+
" df = pd.DataFrame(history)\n",
|
158 |
+
" \n",
|
159 |
+
" if not df.empty:\n",
|
160 |
+
" fig, axes = plt.subplots(2, 2, figsize=(15, 10))\n",
|
161 |
+
" fig.suptitle('H200 GPU Utilization Summary', fontsize=16)\n",
|
162 |
+
" \n",
|
163 |
+
" # GPU Utilization\n",
|
164 |
+
" axes[0,0].plot(df['timestamp'], df['GPU_Util_%'], 'b-', linewidth=2)\n",
|
165 |
+
" axes[0,0].set_title('GPU Compute Utilization (%)')\n",
|
166 |
+
" axes[0,0].set_ylabel('Utilization %')\n",
|
167 |
+
" axes[0,0].grid(True, alpha=0.3)\n",
|
168 |
+
" axes[0,0].axhline(y=90, color='g', linestyle='--', alpha=0.7, label='Target >90%')\n",
|
169 |
+
" axes[0,0].legend()\n",
|
170 |
+
" \n",
|
171 |
+
" # Memory Utilization\n",
|
172 |
+
" mem_percent = (df['Mem_Used_MB'] / df['Mem_Total_MB']) * 100\n",
|
173 |
+
" axes[0,1].plot(df['timestamp'], mem_percent, 'r-', linewidth=2)\n",
|
174 |
+
" axes[0,1].set_title('Memory Utilization (%)')\n",
|
175 |
+
" axes[0,1].set_ylabel('Memory %')\n",
|
176 |
+
" axes[0,1].grid(True, alpha=0.3)\n",
|
177 |
+
" axes[0,1].axhline(y=95, color='g', linestyle='--', alpha=0.7, label='Target >95%')\n",
|
178 |
+
" axes[0,1].legend()\n",
|
179 |
+
" \n",
|
180 |
+
" # Temperature\n",
|
181 |
+
" axes[1,0].plot(df['timestamp'], df['Temp_C'], 'orange', linewidth=2)\n",
|
182 |
+
" axes[1,0].set_title('Temperature (Β°C)')\n",
|
183 |
+
" axes[1,0].set_ylabel('Temperature Β°C')\n",
|
184 |
+
" axes[1,0].grid(True, alpha=0.3)\n",
|
185 |
+
" axes[1,0].axhline(y=80, color='r', linestyle='--', alpha=0.7, label='Caution >80Β°C')\n",
|
186 |
+
" axes[1,0].legend()\n",
|
187 |
+
" \n",
|
188 |
+
" # Power Usage\n",
|
189 |
+
" power_percent = (df['Power_W'] / df['Power_Limit_W']) * 100\n",
|
190 |
+
" axes[1,1].plot(df['timestamp'], power_percent, 'purple', linewidth=2)\n",
|
191 |
+
" axes[1,1].set_title('Power Usage (%)')\n",
|
192 |
+
" axes[1,1].set_ylabel('Power %')\n",
|
193 |
+
" axes[1,1].grid(True, alpha=0.3)\n",
|
194 |
+
" axes[1,1].axhline(y=80, color='g', linestyle='--', alpha=0.7, label='Target >80%')\n",
|
195 |
+
" axes[1,1].legend()\n",
|
196 |
+
" \n",
|
197 |
+
" plt.tight_layout()\n",
|
198 |
+
" plt.show()\n",
|
199 |
+
" \n",
|
200 |
+
" # Print summary statistics\n",
|
201 |
+
" print(\"\\nπ TRAINING SESSION SUMMARY:\")\n",
|
202 |
+
" print(\"=\" * 50)\n",
|
203 |
+
" print(f\"Average GPU Utilization: {df['GPU_Util_%'].mean():.1f}% (Target: >90%)\")\n",
|
204 |
+
" print(f\"Average Memory Usage: {mem_percent.mean():.1f}% (Target: >95%)\")\n",
|
205 |
+
" print(f\"Average Temperature: {df['Temp_C'].mean():.1f}Β°C (Safe: <80Β°C)\")\n",
|
206 |
+
" print(f\"Average Power Usage: {power_percent.mean():.1f}% (Target: >80%)\")\n",
|
207 |
+
" print(f\"Max Memory Used: {df['Mem_Used_MB'].max()/1024:.1f}GB\")\n",
|
208 |
+
"\n",
|
209 |
+
"# Quick one-time check function\n",
|
210 |
+
"def quick_check():\n",
|
211 |
+
" \"\"\"Quick one-time GPU status check\"\"\"\n",
|
212 |
+
" gpu_stats = get_gpu_stats()\n",
|
213 |
+
" \n",
|
214 |
+
" if gpu_stats:\n",
|
215 |
+
" for gpu in gpu_stats:\n",
|
216 |
+
" mem_used_gb = gpu['Mem_Used_MB'] / 1024\n",
|
217 |
+
" mem_total_gb = gpu['Mem_Total_MB'] / 1024\n",
|
218 |
+
" mem_percent = (mem_used_gb / mem_total_gb) * 100\n",
|
219 |
+
" \n",
|
220 |
+
" print(f\"π₯ GPU {gpu['GPU']}: {gpu['Name']}\")\n",
|
221 |
+
" print(f\" π» Compute: {gpu['GPU_Util_%']:.1f}%\")\n",
|
222 |
+
" print(f\" π§ Memory: {mem_used_gb:.1f}GB/{mem_total_gb:.1f}GB ({mem_percent:.1f}%)\")\n",
|
223 |
+
" print(f\" π‘οΈ Temp: {gpu['Temp_C']:.1f}Β°C\")\n",
|
224 |
+
" print(f\" β‘ Power: {gpu['Power_W']:.1f}W\")\n",
|
225 |
+
"\n",
|
226 |
+
"# Usage examples:\n",
|
227 |
+
"print(\"π H200 GPU Monitor Ready!\")\n",
|
228 |
+
"print(\"\\nUsage:\")\n",
|
229 |
+
"print(\"quick_check() # One-time status check\")\n",
|
230 |
+
"print(\"monitor_gpu(30, 2) # Monitor for 30 minutes, refresh every 2 seconds\")\n",
|
231 |
+
"print(\"monitor_gpu(60) # Monitor for 1 hour with default settings\")"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "code",
|
236 |
+
"execution_count": null,
|
237 |
+
"id": "ed5c7a88-eddf-4c8d-afac-2bda4bc3dcb9",
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [
|
240 |
+
{
|
241 |
+
"name": "stdout",
|
242 |
+
"output_type": "stream",
|
243 |
+
"text": [
|
244 |
+
"π GPU Utilization Monitor - H200 Training Analysis\n",
|
245 |
+
"======================================================================\n",
|
246 |
+
"β° Monitoring Time: 1.6/30 minutes\n",
|
247 |
+
"π Current Time: 22:44:08\n",
|
248 |
+
"\n",
|
249 |
+
"π₯ GPU 0: NVIDIA H200 NVL\n",
|
250 |
+
" π» Compute Utilization: 100.0% π’\n",
|
251 |
+
" π§ Memory: 138.7GB / 140.4GB ( 98.8%) π’\n",
|
252 |
+
" π‘οΈ Temperature: 83.0Β°C π‘\n",
|
253 |
+
" β‘ Power: 540.7W / 600.0W ( 90.1%) π’\n",
|
254 |
+
"\n",
|
255 |
+
"π UTILIZATION ANALYSIS:\n",
|
256 |
+
" β
EXCELLENT: GPU is fully utilized!\n",
|
257 |
+
" π Average GPU Compute: 100.0%\n",
|
258 |
+
" πΎ Average Memory Usage: 98.8%\n"
|
259 |
+
]
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"source": [
|
263 |
+
"monitor_gpu(30, 2) "
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"id": "910a1785-c220-4bbc-810c-8df4ca8e9931",
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": []
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"kernelspec": {
|
277 |
+
"display_name": "Python 3 (ipykernel)",
|
278 |
+
"language": "python",
|
279 |
+
"name": "python3"
|
280 |
+
},
|
281 |
+
"language_info": {
|
282 |
+
"codemirror_mode": {
|
283 |
+
"name": "ipython",
|
284 |
+
"version": 3
|
285 |
+
},
|
286 |
+
"file_extension": ".py",
|
287 |
+
"mimetype": "text/x-python",
|
288 |
+
"name": "python",
|
289 |
+
"nbconvert_exporter": "python",
|
290 |
+
"pygments_lexer": "ipython3",
|
291 |
+
"version": "3.10.12"
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"nbformat": 4,
|
295 |
+
"nbformat_minor": 5
|
296 |
+
}
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 960760928
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ec865c41f048ddedd7437b869d7037cf8898242aaff867df014f34b8c3ddc81
|
3 |
size 960760928
|