Create inference.py
Browse files- inference.py +28 -0
inference.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
# Load metadata from the JSON file
|
| 7 |
+
with open('metadata.json') as f:
|
| 8 |
+
metadata = json.load(f)
|
| 9 |
+
|
| 10 |
+
def predict(image_path: str):
|
| 11 |
+
# Load the fine-tuned model and feature extractor from Hugging Face Hub
|
| 12 |
+
model = ViTForImageClassification.from_pretrained("yigagilbert/image-quality-model")
|
| 13 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("yigagilbert/image-quality-model")
|
| 14 |
+
|
| 15 |
+
# Open and preprocess the image
|
| 16 |
+
image = Image.open(image_path)
|
| 17 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
# Perform inference
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
outputs = model(**inputs)
|
| 22 |
+
predicted_value = outputs.logits.squeeze().item()
|
| 23 |
+
|
| 24 |
+
# Scale the predicted value to match the dataset's max value
|
| 25 |
+
max_value = metadata.get('max_value', 1.0) # Default to 1.0 if not found
|
| 26 |
+
predicted_value_scaled = predicted_value * max_value
|
| 27 |
+
|
| 28 |
+
return predicted_value_scaled
|