yessel commited on
Commit
5144a6c
·
verified ·
1 Parent(s): ae7cedc

Upload ExaoneForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "exaone_3.5_7.8b_instruct_merged",
3
+ "activation_function": "silu",
4
+ "architectures": [
5
+ "ExaoneForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_exaone.ExaoneConfig",
10
+ "AutoModelForCausalLM": "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct--modeling_exaone.ExaoneForCausalLM",
11
+ "AutoModelForSequenceClassification": "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct--modeling_exaone.ExaoneForSequenceClassification"
12
+ },
13
+ "bos_token_id": 1,
14
+ "embed_dropout": 0.0,
15
+ "eos_token_id": 361,
16
+ "head_dim": 128,
17
+ "hidden_size": 4096,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 14336,
20
+ "layer_norm_epsilon": 1e-05,
21
+ "max_position_embeddings": 32768,
22
+ "model_type": "exaone",
23
+ "num_attention_heads": 32,
24
+ "num_key_value_heads": 8,
25
+ "num_layers": 32,
26
+ "pad_token_id": 0,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 1000000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.46.1",
38
+ "use_cache": true,
39
+ "vocab_size": 102400
40
+ }
configuration_exaone.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """EXAONE model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ class ExaoneConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to
29
+ instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
30
+ configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
33
+ outputs. Read the documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 102400):
38
+ Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model.
40
+ Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
41
+ [`ExaoneModel`].
42
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
43
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
44
+ just in case (e.g., 512 or 1024 or 2048).
45
+ hidden_size (`int`, *optional*, defaults to 2048):
46
+ Dimensionality of the encoder layers and the pooler layer.
47
+ num_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
60
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
61
+ activation_function (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ rope_theta (`float`, *optional*, defaults to 10000.0):
64
+ The base period of the RoPE embeddings.
65
+ rope_scaling (`Dict`, *optional*):
66
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
67
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
68
+ accordingly.
69
+ Expected contents:
70
+ `rope_type` (`str`):
71
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
72
+ 'llama3'], with 'default' being the original RoPE implementation.
73
+ `factor` (`float`, *optional*):
74
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
75
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
76
+ original maximum pre-trained length.
77
+ `original_max_position_embeddings` (`int`, *optional*):
78
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
79
+ pretraining.
80
+ `attention_factor` (`float`, *optional*):
81
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
82
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
83
+ `factor` field to infer the suggested value.
84
+ `beta_fast` (`float`, *optional*):
85
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
86
+ ramp function. If unspecified, it defaults to 32.
87
+ `beta_slow` (`float`, *optional*):
88
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
89
+ ramp function. If unspecified, it defaults to 1.
90
+ `short_factor` (`List[float]`, *optional*):
91
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
92
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
93
+ size divided by the number of attention heads divided by 2
94
+ `long_factor` (`List[float]`, *optional*):
95
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `low_freq_factor` (`float`, *optional*):
99
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
100
+ `high_freq_factor` (`float`, *optional*):
101
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
102
+ embed_dropout (`float`, *optional*, defaults to 0.0):
103
+ The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
104
+ attention_dropout (`float`, *optional*, defaults to 0.0):
105
+ The dropout ratio for the attention probabilities.
106
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
107
+ The epsilon used by the layer normalization layers.
108
+ initializer_range (`float`, *optional*, defaults to 0.02):
109
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
110
+ use_cache (`bool`, *optional*, defaults to `True`):
111
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
112
+ relevant if ``config.is_decoder=True``.
113
+ bos_token_id (`int`, *optional*, defaults to 0):
114
+ Beginning of stream token id.
115
+ eos_token_id (`int`, *optional*, defaults to 2):
116
+ End of stream token id.
117
+
118
+ Example:
119
+
120
+ ```python
121
+ >>> from transformers import EXAONEModel, ExaoneConfig
122
+
123
+ >>> # Initializing a EXAONE configuration
124
+ >>> configuration = ExaoneConfig()
125
+
126
+ >>> # Initializing a model from configuration
127
+ >>> model = EXAONEModel(configuration)
128
+
129
+ >>> # Accessing the model configuration
130
+ >>> configuration = model.config
131
+ ```"""
132
+
133
+ model_type = "exaone"
134
+ keys_to_ignore_at_inference = ["past_key_values"]
135
+ attribute_map = {"num_hidden_layers": "num_layers"}
136
+
137
+ def __init__(
138
+ self,
139
+ vocab_size=102400,
140
+ max_position_embeddings=2048,
141
+ hidden_size=2048,
142
+ num_layers=32,
143
+ num_attention_heads=32,
144
+ num_key_value_heads=None,
145
+ intermediate_size=None,
146
+ activation_function="silu",
147
+ rope_theta=10000.0,
148
+ rope_scaling=None,
149
+ embed_dropout=0.0,
150
+ attention_dropout=0.0,
151
+ layer_norm_epsilon=1e-5,
152
+ initializer_range=0.02,
153
+ use_cache=True,
154
+ bos_token_id=0,
155
+ eos_token_id=2,
156
+ **kwargs,
157
+ ):
158
+ self.vocab_size = vocab_size
159
+ self.max_position_embeddings = max_position_embeddings
160
+ self.hidden_size = hidden_size
161
+ self.num_layers = num_layers
162
+ self.num_attention_heads = num_attention_heads
163
+ self.num_layers = num_layers
164
+ if num_key_value_heads is None:
165
+ num_key_value_heads = num_attention_heads
166
+ self.num_key_value_heads = num_key_value_heads
167
+ if intermediate_size:
168
+ self.intermediate_size = intermediate_size
169
+ else:
170
+ self.intermediate_size = hidden_size * 4
171
+ self.activation_function = activation_function
172
+ self.embed_dropout = embed_dropout
173
+ self.attention_dropout = attention_dropout
174
+ self.layer_norm_epsilon = layer_norm_epsilon
175
+ self.initializer_range = initializer_range
176
+ self.use_cache = use_cache
177
+ self.rope_theta = rope_theta
178
+ self.rope_scaling = rope_scaling
179
+
180
+ self.bos_token_id = bos_token_id
181
+ self.eos_token_id = eos_token_id
182
+
183
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 361,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.46.1"
7
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a285635fb74daa0a1497dffe783e6f19d079b3de20c8aaf3dc44262f33a611c0
3
+ size 4966229976
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b96d58f37a6847759536bad16d95aa16ade35c0625aeb32aac277fc606fffee
3
+ size 4915916080
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadde9181c940e37fe1cdcf0ac5811cf5ed0d44304cb73fd0c5ddba4ef956016
3
+ size 4915924392
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2861bef31d8d7e1f0fcf12ff45dc47fab9da589bae6157d9beb1b3839424183b
3
+ size 838860928
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15636897792
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "transformer.h.0.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
8
+ "transformer.h.0.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.h.0.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.h.0.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.h.0.ln_1.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.h.0.ln_2.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.h.0.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
14
+ "transformer.h.0.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.h.1.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.h.1.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.h.1.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.h.1.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.h.1.ln_1.weight": "model-00001-of-00004.safetensors",
21
+ "transformer.h.1.ln_2.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.h.1.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
23
+ "transformer.h.1.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
24
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
25
+ "transformer.h.10.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.h.10.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.h.10.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
28
+ "transformer.h.10.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.h.10.ln_1.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.h.10.ln_2.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.h.10.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.h.10.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.h.10.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.h.11.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
35
+ "transformer.h.11.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.h.11.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.h.11.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.h.11.ln_1.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.h.11.ln_2.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.h.11.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.h.11.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
42
+ "transformer.h.11.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.h.12.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.h.12.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.h.12.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.h.12.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.h.12.ln_1.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.h.12.ln_2.weight": "model-00002-of-00004.safetensors",
49
+ "transformer.h.12.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.h.12.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.h.12.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.h.13.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.h.13.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.h.13.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.h.13.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "transformer.h.13.ln_1.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.h.13.ln_2.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.h.13.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.h.13.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.h.13.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.h.14.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.h.14.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
63
+ "transformer.h.14.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.h.14.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.h.14.ln_1.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.h.14.ln_2.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.h.14.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.h.14.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
70
+ "transformer.h.15.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.h.15.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.h.15.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.h.15.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.h.15.ln_1.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.h.15.ln_2.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.h.15.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
77
+ "transformer.h.15.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.h.16.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.h.16.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.h.16.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.h.16.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.h.16.ln_1.weight": "model-00002-of-00004.safetensors",
84
+ "transformer.h.16.ln_2.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.h.16.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.h.16.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.h.17.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.h.17.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.h.17.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
91
+ "transformer.h.17.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.h.17.ln_1.weight": "model-00002-of-00004.safetensors",
93
+ "transformer.h.17.ln_2.weight": "model-00002-of-00004.safetensors",
94
+ "transformer.h.17.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
95
+ "transformer.h.17.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
96
+ "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
97
+ "transformer.h.18.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
98
+ "transformer.h.18.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
99
+ "transformer.h.18.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.h.18.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.h.18.ln_1.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.h.18.ln_2.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.h.18.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.h.18.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
105
+ "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.h.19.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.h.19.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
108
+ "transformer.h.19.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
109
+ "transformer.h.19.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.h.19.ln_1.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.h.19.ln_2.weight": "model-00002-of-00004.safetensors",
112
+ "transformer.h.19.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.h.19.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
114
+ "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
115
+ "transformer.h.2.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
116
+ "transformer.h.2.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
117
+ "transformer.h.2.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
118
+ "transformer.h.2.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
119
+ "transformer.h.2.ln_1.weight": "model-00001-of-00004.safetensors",
120
+ "transformer.h.2.ln_2.weight": "model-00001-of-00004.safetensors",
121
+ "transformer.h.2.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
122
+ "transformer.h.2.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
123
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
124
+ "transformer.h.20.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
125
+ "transformer.h.20.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
126
+ "transformer.h.20.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "transformer.h.20.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "transformer.h.20.ln_1.weight": "model-00002-of-00004.safetensors",
129
+ "transformer.h.20.ln_2.weight": "model-00002-of-00004.safetensors",
130
+ "transformer.h.20.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
131
+ "transformer.h.20.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
132
+ "transformer.h.20.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
133
+ "transformer.h.21.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.h.21.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.h.21.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.h.21.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.h.21.ln_1.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.h.21.ln_2.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.h.21.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
140
+ "transformer.h.21.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.h.21.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.h.22.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.h.22.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.h.22.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.h.22.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.h.22.ln_1.weight": "model-00003-of-00004.safetensors",
147
+ "transformer.h.22.ln_2.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.h.22.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.h.22.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.h.22.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.h.23.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.h.23.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.h.23.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
154
+ "transformer.h.23.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.h.23.ln_1.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.h.23.ln_2.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.h.23.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.h.23.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.h.23.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.h.24.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
161
+ "transformer.h.24.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.h.24.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.h.24.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.h.24.ln_1.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.h.24.ln_2.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.h.24.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.h.24.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
168
+ "transformer.h.24.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.h.25.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
170
+ "transformer.h.25.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
171
+ "transformer.h.25.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
172
+ "transformer.h.25.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
173
+ "transformer.h.25.ln_1.weight": "model-00003-of-00004.safetensors",
174
+ "transformer.h.25.ln_2.weight": "model-00003-of-00004.safetensors",
175
+ "transformer.h.25.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
176
+ "transformer.h.25.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.h.25.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.h.26.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.h.26.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.h.26.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.h.26.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
182
+ "transformer.h.26.ln_1.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.h.26.ln_2.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.h.26.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.h.26.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.h.26.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.h.27.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.h.27.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
189
+ "transformer.h.27.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.h.27.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.h.27.ln_1.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.h.27.ln_2.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.h.27.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.h.27.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.h.27.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
196
+ "transformer.h.28.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.h.28.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.h.28.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "transformer.h.28.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "transformer.h.28.ln_1.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.h.28.ln_2.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.h.28.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
203
+ "transformer.h.28.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.h.28.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
205
+ "transformer.h.29.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
206
+ "transformer.h.29.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
207
+ "transformer.h.29.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
208
+ "transformer.h.29.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
209
+ "transformer.h.29.ln_1.weight": "model-00003-of-00004.safetensors",
210
+ "transformer.h.29.ln_2.weight": "model-00003-of-00004.safetensors",
211
+ "transformer.h.29.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
212
+ "transformer.h.29.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
213
+ "transformer.h.29.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
214
+ "transformer.h.3.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
215
+ "transformer.h.3.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
216
+ "transformer.h.3.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
217
+ "transformer.h.3.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
218
+ "transformer.h.3.ln_1.weight": "model-00001-of-00004.safetensors",
219
+ "transformer.h.3.ln_2.weight": "model-00001-of-00004.safetensors",
220
+ "transformer.h.3.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
221
+ "transformer.h.3.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
222
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
223
+ "transformer.h.30.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "transformer.h.30.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
225
+ "transformer.h.30.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
226
+ "transformer.h.30.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
227
+ "transformer.h.30.ln_1.weight": "model-00003-of-00004.safetensors",
228
+ "transformer.h.30.ln_2.weight": "model-00003-of-00004.safetensors",
229
+ "transformer.h.30.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
230
+ "transformer.h.30.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
231
+ "transformer.h.30.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
232
+ "transformer.h.31.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
233
+ "transformer.h.31.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
234
+ "transformer.h.31.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
235
+ "transformer.h.31.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "transformer.h.31.ln_1.weight": "model-00003-of-00004.safetensors",
237
+ "transformer.h.31.ln_2.weight": "model-00003-of-00004.safetensors",
238
+ "transformer.h.31.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
239
+ "transformer.h.31.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
240
+ "transformer.h.31.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
241
+ "transformer.h.4.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
242
+ "transformer.h.4.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
243
+ "transformer.h.4.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
244
+ "transformer.h.4.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
245
+ "transformer.h.4.ln_1.weight": "model-00001-of-00004.safetensors",
246
+ "transformer.h.4.ln_2.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.h.4.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.h.4.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.h.5.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.h.5.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
252
+ "transformer.h.5.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.h.5.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.h.5.ln_1.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.h.5.ln_2.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.h.5.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.h.5.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
259
+ "transformer.h.6.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.h.6.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.h.6.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.h.6.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.h.6.ln_1.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.h.6.ln_2.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.h.6.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
266
+ "transformer.h.6.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.h.7.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.h.7.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.h.7.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.h.7.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.h.7.ln_1.weight": "model-00001-of-00004.safetensors",
273
+ "transformer.h.7.ln_2.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.h.7.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.h.7.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.h.8.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.h.8.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.h.8.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
280
+ "transformer.h.8.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.h.8.ln_1.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.h.8.ln_2.weight": "model-00001-of-00004.safetensors",
283
+ "transformer.h.8.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
284
+ "transformer.h.8.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.h.9.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
287
+ "transformer.h.9.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.h.9.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
289
+ "transformer.h.9.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
290
+ "transformer.h.9.ln_1.weight": "model-00001-of-00004.safetensors",
291
+ "transformer.h.9.ln_2.weight": "model-00001-of-00004.safetensors",
292
+ "transformer.h.9.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
293
+ "transformer.h.9.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
294
+ "transformer.h.9.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
295
+ "transformer.ln_f.weight": "model-00003-of-00004.safetensors",
296
+ "transformer.wte.weight": "model-00001-of-00004.safetensors"
297
+ }
298
+ }