Upload ExaoneForCausalLM
Browse files- README.md +199 -0
- config.json +40 -0
- configuration_exaone.py +183 -0
- generation_config.json +7 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +298 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "exaone_3.5_7.8b_instruct_merged",
|
3 |
+
"activation_function": "silu",
|
4 |
+
"architectures": [
|
5 |
+
"ExaoneForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_exaone.ExaoneConfig",
|
10 |
+
"AutoModelForCausalLM": "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct--modeling_exaone.ExaoneForCausalLM",
|
11 |
+
"AutoModelForSequenceClassification": "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct--modeling_exaone.ExaoneForSequenceClassification"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"embed_dropout": 0.0,
|
15 |
+
"eos_token_id": 361,
|
16 |
+
"head_dim": 128,
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 14336,
|
20 |
+
"layer_norm_epsilon": 1e-05,
|
21 |
+
"max_position_embeddings": 32768,
|
22 |
+
"model_type": "exaone",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"num_layers": 32,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"rope_scaling": {
|
28 |
+
"factor": 8.0,
|
29 |
+
"high_freq_factor": 4.0,
|
30 |
+
"low_freq_factor": 1.0,
|
31 |
+
"original_max_position_embeddings": 8192,
|
32 |
+
"rope_type": "llama3"
|
33 |
+
},
|
34 |
+
"rope_theta": 1000000.0,
|
35 |
+
"tie_word_embeddings": false,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.46.1",
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 102400
|
40 |
+
}
|
configuration_exaone.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""EXAONE model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
class ExaoneConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to
|
29 |
+
instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
|
30 |
+
configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
|
33 |
+
outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 102400):
|
38 |
+
Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model.
|
40 |
+
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
|
41 |
+
[`ExaoneModel`].
|
42 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
44 |
+
just in case (e.g., 512 or 1024 or 2048).
|
45 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
num_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
|
60 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
61 |
+
activation_function (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
64 |
+
The base period of the RoPE embeddings.
|
65 |
+
rope_scaling (`Dict`, *optional*):
|
66 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
67 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
68 |
+
accordingly.
|
69 |
+
Expected contents:
|
70 |
+
`rope_type` (`str`):
|
71 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
72 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
73 |
+
`factor` (`float`, *optional*):
|
74 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
75 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
76 |
+
original maximum pre-trained length.
|
77 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
78 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
79 |
+
pretraining.
|
80 |
+
`attention_factor` (`float`, *optional*):
|
81 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
82 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
83 |
+
`factor` field to infer the suggested value.
|
84 |
+
`beta_fast` (`float`, *optional*):
|
85 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
86 |
+
ramp function. If unspecified, it defaults to 32.
|
87 |
+
`beta_slow` (`float`, *optional*):
|
88 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
89 |
+
ramp function. If unspecified, it defaults to 1.
|
90 |
+
`short_factor` (`List[float]`, *optional*):
|
91 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
92 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
93 |
+
size divided by the number of attention heads divided by 2
|
94 |
+
`long_factor` (`List[float]`, *optional*):
|
95 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
96 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
97 |
+
size divided by the number of attention heads divided by 2
|
98 |
+
`low_freq_factor` (`float`, *optional*):
|
99 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
100 |
+
`high_freq_factor` (`float`, *optional*):
|
101 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
102 |
+
embed_dropout (`float`, *optional*, defaults to 0.0):
|
103 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
104 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
105 |
+
The dropout ratio for the attention probabilities.
|
106 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
107 |
+
The epsilon used by the layer normalization layers.
|
108 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
109 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
110 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
111 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
112 |
+
relevant if ``config.is_decoder=True``.
|
113 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
114 |
+
Beginning of stream token id.
|
115 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
116 |
+
End of stream token id.
|
117 |
+
|
118 |
+
Example:
|
119 |
+
|
120 |
+
```python
|
121 |
+
>>> from transformers import EXAONEModel, ExaoneConfig
|
122 |
+
|
123 |
+
>>> # Initializing a EXAONE configuration
|
124 |
+
>>> configuration = ExaoneConfig()
|
125 |
+
|
126 |
+
>>> # Initializing a model from configuration
|
127 |
+
>>> model = EXAONEModel(configuration)
|
128 |
+
|
129 |
+
>>> # Accessing the model configuration
|
130 |
+
>>> configuration = model.config
|
131 |
+
```"""
|
132 |
+
|
133 |
+
model_type = "exaone"
|
134 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
135 |
+
attribute_map = {"num_hidden_layers": "num_layers"}
|
136 |
+
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
vocab_size=102400,
|
140 |
+
max_position_embeddings=2048,
|
141 |
+
hidden_size=2048,
|
142 |
+
num_layers=32,
|
143 |
+
num_attention_heads=32,
|
144 |
+
num_key_value_heads=None,
|
145 |
+
intermediate_size=None,
|
146 |
+
activation_function="silu",
|
147 |
+
rope_theta=10000.0,
|
148 |
+
rope_scaling=None,
|
149 |
+
embed_dropout=0.0,
|
150 |
+
attention_dropout=0.0,
|
151 |
+
layer_norm_epsilon=1e-5,
|
152 |
+
initializer_range=0.02,
|
153 |
+
use_cache=True,
|
154 |
+
bos_token_id=0,
|
155 |
+
eos_token_id=2,
|
156 |
+
**kwargs,
|
157 |
+
):
|
158 |
+
self.vocab_size = vocab_size
|
159 |
+
self.max_position_embeddings = max_position_embeddings
|
160 |
+
self.hidden_size = hidden_size
|
161 |
+
self.num_layers = num_layers
|
162 |
+
self.num_attention_heads = num_attention_heads
|
163 |
+
self.num_layers = num_layers
|
164 |
+
if num_key_value_heads is None:
|
165 |
+
num_key_value_heads = num_attention_heads
|
166 |
+
self.num_key_value_heads = num_key_value_heads
|
167 |
+
if intermediate_size:
|
168 |
+
self.intermediate_size = intermediate_size
|
169 |
+
else:
|
170 |
+
self.intermediate_size = hidden_size * 4
|
171 |
+
self.activation_function = activation_function
|
172 |
+
self.embed_dropout = embed_dropout
|
173 |
+
self.attention_dropout = attention_dropout
|
174 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
175 |
+
self.initializer_range = initializer_range
|
176 |
+
self.use_cache = use_cache
|
177 |
+
self.rope_theta = rope_theta
|
178 |
+
self.rope_scaling = rope_scaling
|
179 |
+
|
180 |
+
self.bos_token_id = bos_token_id
|
181 |
+
self.eos_token_id = eos_token_id
|
182 |
+
|
183 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 361,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.46.1"
|
7 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a285635fb74daa0a1497dffe783e6f19d079b3de20c8aaf3dc44262f33a611c0
|
3 |
+
size 4966229976
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b96d58f37a6847759536bad16d95aa16ade35c0625aeb32aac277fc606fffee
|
3 |
+
size 4915916080
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadde9181c940e37fe1cdcf0ac5811cf5ed0d44304cb73fd0c5ddba4ef956016
|
3 |
+
size 4915924392
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2861bef31d8d7e1f0fcf12ff45dc47fab9da589bae6157d9beb1b3839424183b
|
3 |
+
size 838860928
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15636897792
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"transformer.h.0.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"transformer.h.0.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"transformer.h.0.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"transformer.h.0.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"transformer.h.0.ln_2.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"transformer.h.0.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"transformer.h.0.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"transformer.h.1.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"transformer.h.1.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"transformer.h.1.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"transformer.h.1.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"transformer.h.1.ln_2.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"transformer.h.1.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"transformer.h.1.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"transformer.h.1.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"transformer.h.10.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
26 |
+
"transformer.h.10.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"transformer.h.10.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"transformer.h.10.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"transformer.h.10.ln_1.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"transformer.h.10.ln_2.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"transformer.h.10.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"transformer.h.10.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"transformer.h.10.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"transformer.h.11.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"transformer.h.11.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"transformer.h.11.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"transformer.h.11.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"transformer.h.11.ln_1.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"transformer.h.11.ln_2.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"transformer.h.11.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"transformer.h.11.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"transformer.h.11.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"transformer.h.12.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"transformer.h.12.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"transformer.h.12.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"transformer.h.12.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"transformer.h.12.ln_1.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"transformer.h.12.ln_2.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"transformer.h.12.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"transformer.h.12.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"transformer.h.12.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"transformer.h.13.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"transformer.h.13.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"transformer.h.13.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"transformer.h.13.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"transformer.h.13.ln_1.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"transformer.h.13.ln_2.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"transformer.h.13.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"transformer.h.13.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"transformer.h.13.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"transformer.h.14.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"transformer.h.14.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"transformer.h.14.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"transformer.h.14.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"transformer.h.14.ln_1.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"transformer.h.14.ln_2.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"transformer.h.14.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"transformer.h.14.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"transformer.h.14.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"transformer.h.15.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"transformer.h.15.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"transformer.h.15.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"transformer.h.15.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"transformer.h.15.ln_1.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"transformer.h.15.ln_2.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"transformer.h.15.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"transformer.h.15.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"transformer.h.15.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"transformer.h.16.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"transformer.h.16.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"transformer.h.16.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"transformer.h.16.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"transformer.h.16.ln_1.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"transformer.h.16.ln_2.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"transformer.h.16.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"transformer.h.16.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"transformer.h.16.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"transformer.h.17.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"transformer.h.17.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"transformer.h.17.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"transformer.h.17.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"transformer.h.17.ln_1.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"transformer.h.17.ln_2.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"transformer.h.17.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"transformer.h.17.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"transformer.h.17.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"transformer.h.18.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"transformer.h.18.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"transformer.h.18.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"transformer.h.18.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"transformer.h.18.ln_1.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"transformer.h.18.ln_2.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"transformer.h.18.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"transformer.h.18.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"transformer.h.18.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"transformer.h.19.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"transformer.h.19.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"transformer.h.19.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"transformer.h.19.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"transformer.h.19.ln_1.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"transformer.h.19.ln_2.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"transformer.h.19.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"transformer.h.19.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"transformer.h.19.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"transformer.h.2.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
116 |
+
"transformer.h.2.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"transformer.h.2.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"transformer.h.2.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"transformer.h.2.ln_2.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"transformer.h.2.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"transformer.h.2.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"transformer.h.2.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"transformer.h.20.attn.attention.k_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"transformer.h.20.attn.attention.out_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"transformer.h.20.attn.attention.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"transformer.h.20.attn.attention.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"transformer.h.20.ln_1.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"transformer.h.20.ln_2.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"transformer.h.20.mlp.c_fc_0.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"transformer.h.20.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"transformer.h.20.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"transformer.h.21.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"transformer.h.21.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"transformer.h.21.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"transformer.h.21.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"transformer.h.21.ln_1.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"transformer.h.21.ln_2.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"transformer.h.21.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"transformer.h.21.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"transformer.h.21.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"transformer.h.22.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"transformer.h.22.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"transformer.h.22.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"transformer.h.22.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"transformer.h.22.ln_1.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"transformer.h.22.ln_2.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"transformer.h.22.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"transformer.h.22.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"transformer.h.22.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"transformer.h.23.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"transformer.h.23.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"transformer.h.23.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"transformer.h.23.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"transformer.h.23.ln_1.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"transformer.h.23.ln_2.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"transformer.h.23.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"transformer.h.23.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"transformer.h.23.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"transformer.h.24.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"transformer.h.24.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"transformer.h.24.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"transformer.h.24.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"transformer.h.24.ln_1.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"transformer.h.24.ln_2.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"transformer.h.24.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"transformer.h.24.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"transformer.h.24.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"transformer.h.25.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"transformer.h.25.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"transformer.h.25.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"transformer.h.25.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"transformer.h.25.ln_1.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"transformer.h.25.ln_2.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"transformer.h.25.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"transformer.h.25.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"transformer.h.25.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"transformer.h.26.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"transformer.h.26.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"transformer.h.26.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"transformer.h.26.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"transformer.h.26.ln_1.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"transformer.h.26.ln_2.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"transformer.h.26.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"transformer.h.26.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"transformer.h.26.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"transformer.h.27.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"transformer.h.27.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"transformer.h.27.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"transformer.h.27.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"transformer.h.27.ln_1.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"transformer.h.27.ln_2.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"transformer.h.27.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"transformer.h.27.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"transformer.h.27.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"transformer.h.28.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"transformer.h.28.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"transformer.h.28.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"transformer.h.28.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"transformer.h.28.ln_1.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"transformer.h.28.ln_2.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"transformer.h.28.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"transformer.h.28.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"transformer.h.28.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"transformer.h.29.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"transformer.h.29.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"transformer.h.29.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"transformer.h.29.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"transformer.h.29.ln_1.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"transformer.h.29.ln_2.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"transformer.h.29.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"transformer.h.29.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"transformer.h.29.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"transformer.h.3.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
215 |
+
"transformer.h.3.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"transformer.h.3.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"transformer.h.3.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"transformer.h.3.ln_2.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"transformer.h.3.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"transformer.h.3.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"transformer.h.3.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"transformer.h.30.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"transformer.h.30.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"transformer.h.30.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"transformer.h.30.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"transformer.h.30.ln_1.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"transformer.h.30.ln_2.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"transformer.h.30.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"transformer.h.30.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"transformer.h.30.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"transformer.h.31.attn.attention.k_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"transformer.h.31.attn.attention.out_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"transformer.h.31.attn.attention.q_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"transformer.h.31.attn.attention.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"transformer.h.31.ln_1.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"transformer.h.31.ln_2.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"transformer.h.31.mlp.c_fc_0.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"transformer.h.31.mlp.c_fc_1.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"transformer.h.31.mlp.c_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"transformer.h.4.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
242 |
+
"transformer.h.4.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"transformer.h.4.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"transformer.h.4.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"transformer.h.4.ln_1.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"transformer.h.4.ln_2.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"transformer.h.4.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"transformer.h.4.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"transformer.h.4.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"transformer.h.5.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"transformer.h.5.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"transformer.h.5.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"transformer.h.5.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"transformer.h.5.ln_1.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"transformer.h.5.ln_2.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"transformer.h.5.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"transformer.h.5.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"transformer.h.5.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"transformer.h.6.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"transformer.h.6.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"transformer.h.6.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"transformer.h.6.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"transformer.h.6.ln_1.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"transformer.h.6.ln_2.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"transformer.h.6.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"transformer.h.6.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"transformer.h.6.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"transformer.h.7.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"transformer.h.7.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"transformer.h.7.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"transformer.h.7.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"transformer.h.7.ln_1.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"transformer.h.7.ln_2.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"transformer.h.7.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"transformer.h.7.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"transformer.h.7.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"transformer.h.8.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"transformer.h.8.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"transformer.h.8.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"transformer.h.8.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"transformer.h.8.ln_1.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"transformer.h.8.ln_2.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"transformer.h.8.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"transformer.h.8.mlp.c_fc_1.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"transformer.h.8.mlp.c_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"transformer.h.9.attn.attention.k_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"transformer.h.9.attn.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"transformer.h.9.attn.attention.q_proj.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"transformer.h.9.attn.attention.v_proj.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"transformer.h.9.ln_1.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"transformer.h.9.ln_2.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"transformer.h.9.mlp.c_fc_0.weight": "model-00001-of-00004.safetensors",
|
293 |
+
"transformer.h.9.mlp.c_fc_1.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"transformer.h.9.mlp.c_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"transformer.ln_f.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"transformer.wte.weight": "model-00001-of-00004.safetensors"
|
297 |
+
}
|
298 |
+
}
|