--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-turkish-political This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. This model is fine tuned on a custom dataset of Turkish political comments. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("yeniguno/bertopic-turkish-political", embedding_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") topic_model.get_topic_info() text = "Belediye, sokak hayvanları için yeni bir proje başlattı." predictions, probabilities = topic_model.transform(text) ``` ## Topic overview * Number of topics: 10 * Number of training documents: 45249
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | türkiye - halk - iktidar - muhalefet - seçmen | 281 | -1_türkiye_halk_iktidar_muhalefet | | 0 | türkiye - atatürk - seçmen - siyaset - halk | 20262 | 0_türkiye_atatürk_seçmen_siyaset | | 1 | olmak - iktidar - ekonomik - gerekmek - görüş | 12760 | 1_olmak_iktidar_ekonomik_gerekmek | | 2 | seçim - seçmen - koalisyon - meclis - ittifak | 3395 | 2_seçim_seçmen_koalisyon_meclis | | 3 | medya - milliyet - muhalefet - politik - faşist | 3065 | 3_medya_milliyet_muhalefet_politik | | 4 | terör - şiddet - saldırı - terörist - toplum | 2437 | 4_terör_şiddet_saldırı_terörist | | 5 | mahkeme - yargı - toplum - kavram - hukuk | 1641 | 5_mahkeme_yargı_toplum_kavram | | 6 | seçim - meclis - endişe - sonuç - zor | 648 | 6_seçim_meclis_endişe_sonuç | | 7 | köpek - sokak - park - protesto - taksi | 473 | 7_köpek_sokak_park_protesto | | 8 | cinsiyet - lgbt - siyaset - cinsel - tecavüz | 287 | 8_cinsiyet_lgbt_siyaset_cinsel |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 100 * n_gram_range: (1, 1) * nr_topics: 10 * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.2 * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.3.1 * Transformers: 4.47.1 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.11.11