File size: 2,514 Bytes
228d22f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: cc-by-4.0
base_model: NbAiLab/nb-bert-large
tags:
- generated_from_trainer
model-index:
- name: nb-bert-FGN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nb-bert-FGN
This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8455
- F1-score: 0.8640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 120 | 0.4694 | 0.8310 |
| No log | 2.0 | 240 | 0.4810 | 0.8225 |
| No log | 3.0 | 360 | 0.3942 | 0.8528 |
| No log | 4.0 | 480 | 0.7082 | 0.7709 |
| 0.4938 | 5.0 | 600 | 0.7041 | 0.8333 |
| 0.4938 | 6.0 | 720 | 0.6616 | 0.8528 |
| 0.4938 | 7.0 | 840 | 0.9447 | 0.8226 |
| 0.4938 | 8.0 | 960 | 0.8971 | 0.8464 |
| 0.2424 | 9.0 | 1080 | 0.9245 | 0.8348 |
| 0.2424 | 10.0 | 1200 | 0.8455 | 0.8640 |
| 0.2424 | 11.0 | 1320 | 0.8109 | 0.8571 |
| 0.2424 | 12.0 | 1440 | 1.0194 | 0.8566 |
| 0.1235 | 13.0 | 1560 | 0.9609 | 0.8533 |
| 0.1235 | 14.0 | 1680 | 1.0777 | 0.8435 |
| 0.1235 | 15.0 | 1800 | 1.1128 | 0.8450 |
| 0.1235 | 16.0 | 1920 | 1.0391 | 0.8582 |
| 0.0621 | 17.0 | 2040 | 1.1569 | 0.8507 |
| 0.0621 | 18.0 | 2160 | 1.1449 | 0.8492 |
| 0.0621 | 19.0 | 2280 | 1.1715 | 0.8492 |
| 0.0621 | 20.0 | 2400 | 1.1702 | 0.8564 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|