File size: 3,333 Bytes
12a3d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
license: cc-by-4.0
base_model: vesteinn/DanskBERT
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: danskbert_indirect_speech
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# danskbert_indirect_speech

This model is a fine-tuned version of [vesteinn/DanskBERT](https://huggingface.co/vesteinn/DanskBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.6698
- Precision: 0.7042
- Recall: 0.6698
- F1: 0.6640
- Loss: 0.7715

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Accuracy | Precision | Recall | F1     | Validation Loss |
|:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:|
| No log        | 1.0     | 9    | 0.3820   | 0.1459    | 0.3820 | 0.2112 | 1.1479          |
| No log        | 2.0     | 18   | 0.3820   | 0.1459    | 0.3820 | 0.2112 | 1.4862          |
| No log        | 3.0     | 27   | 0.5385   | 0.2900    | 0.5385 | 0.3770 | 1.0168          |
| No log        | 4.0     | 36   | 0.3820   | 0.1459    | 0.3820 | 0.2112 | 1.0134          |
| No log        | 5.0     | 45   | 0.4551   | 0.6492    | 0.4551 | 0.3461 | 0.9242          |
| No log        | 6.0     | 54   | 0.6217   | 0.6269    | 0.6217 | 0.5716 | 0.7808          |
| No log        | 7.0     | 63   | 0.6183   | 0.6601    | 0.6183 | 0.5446 | 0.7970          |
| No log        | 8.0     | 72   | 0.4519   | 0.6933    | 0.4519 | 0.3345 | 1.0565          |
| No log        | 9.0     | 81   | 0.7000   | 0.6985    | 0.7000 | 0.6842 | 0.7125          |
| No log        | 10.0    | 90   | 0.6480   | 0.6978    | 0.6480 | 0.6395 | 0.7874          |
| No log        | 11.0    | 99   | 0.6226   | 0.7064    | 0.6226 | 0.6062 | 0.8571          |
| No log        | 12.0    | 108  | 0.5364   | 0.7104    | 0.5364 | 0.4812 | 1.1975          |
| No log        | 13.0    | 117  | 0.7423   | 0.7327    | 0.7423 | 0.7336 | 0.6509          |
| No log        | 14.0    | 126  | 0.7372   | 0.7275    | 0.7372 | 0.7306 | 0.6489          |
| No log        | 15.0    | 135  | 0.5954   | 0.7039    | 0.5954 | 0.5712 | 0.9821          |
| No log        | 16.0    | 144  | 0.7372   | 0.7317    | 0.7372 | 0.7258 | 0.6768          |
| No log        | 17.0    | 153  | 0.6457   | 0.7049    | 0.6457 | 0.6355 | 0.8276          |
| No log        | 17.8235 | 160  | 0.6698   | 0.7042    | 0.6698 | 0.6640 | 0.7715          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Tokenizers 0.21.0