File size: 2,538 Bytes
c60d6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
base_model: MiMe-MeMo/MeMo-BERT-03
tags:
- generated_from_trainer
model-index:
- name: Noise_MeMo_BERT-3_02
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Noise_MeMo_BERT-3_02

This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0729
- F1-score: 0.6452

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1-score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.095         | 1.0   | 915   | 0.0707          | 0.5373   |
| 0.0532        | 2.0   | 1830  | 0.0877          | 0.4286   |
| 0.0317        | 3.0   | 2745  | 0.0951          | 0.4889   |
| 0.0196        | 4.0   | 3660  | 0.1114          | 0.3590   |
| 0.0265        | 5.0   | 4575  | 0.0810          | 0.6333   |
| 0.0118        | 6.0   | 5490  | 0.1097          | 0.4783   |
| 0.0247        | 7.0   | 6405  | 0.1153          | 0.4583   |
| 0.0255        | 8.0   | 7320  | 0.0781          | 0.5634   |
| 0.0242        | 9.0   | 8235  | 0.1156          | 0.5455   |
| 0.0423        | 10.0  | 9150  | 0.1186          | 0.4      |
| 0.0246        | 11.0  | 10065 | 0.1057          | 0.5000   |
| 0.0224        | 12.0  | 10980 | 0.0998          | 0.56     |
| 0.0168        | 13.0  | 11895 | 0.0729          | 0.6452   |
| 0.0106        | 14.0  | 12810 | 0.1171          | 0.4444   |
| 0.0097        | 15.0  | 13725 | 0.0735          | 0.5818   |
| 0.0187        | 16.0  | 14640 | 0.0943          | 0.5417   |
| 0.0128        | 17.0  | 15555 | 0.1011          | 0.5417   |
| 0.0098        | 18.0  | 16470 | 0.1029          | 0.5714   |
| 0.0116        | 19.0  | 17385 | 0.0949          | 0.6182   |
| 0.0084        | 20.0  | 18300 | 0.0956          | 0.6154   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2