File size: 1,529 Bytes
11c6f6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# BERTopic_vafn

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("ychu612/BERTopic_vafn")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 3
* Number of training documents: 103

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | the - was - she - and - to | 15 | -1_the_was_she_and | 
| 0 | the - she - was - and - her | 55 | 0_the_she_was_and | 
| 1 | the - was - he - and - to | 33 | 1_the_was_he_and |
  
</details>

## Training hyperparameters

* calculate_probabilities: False
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None

## Framework versions

* Numpy: 1.23.0
* HDBSCAN: 0.8.33
* UMAP: 0.5.5
* Pandas: 2.1.4
* Scikit-Learn: 1.1.0
* Sentence-transformers: 2.3.1
* Transformers: 4.38.1
* Numba: 0.56.4
* Plotly: 5.9.0
* Python: 3.10.9