yangheng commited on
Commit
3283c47
·
verified ·
1 Parent(s): 752448e

Update modeling_omnigenome.py

Browse files
Files changed (1) hide show
  1. modeling_omnigenome.py +468 -140
modeling_omnigenome.py CHANGED
@@ -15,8 +15,11 @@
15
  """ PyTorch OmniGenome model."""
16
 
17
  import math
 
 
18
  from typing import List, Optional, Tuple, Union
19
 
 
20
  import torch
21
  import torch.utils.checkpoint
22
  from torch import nn
@@ -300,6 +303,178 @@ class OmniGenomeEmbeddings(nn.Module):
300
  )
301
  return position_ids.unsqueeze(0).expand(input_shape)
302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
 
304
  # Copied from transformers.models.esm.modeling_esm.EsmSelfAttention with Esm->OmniGenome
305
  class OmniGenomeSelfAttention(nn.Module):
@@ -339,6 +514,14 @@ class OmniGenomeSelfAttention(nn.Module):
339
 
340
  self.is_decoder = config.is_decoder
341
 
 
 
 
 
 
 
 
 
342
  def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
343
  new_x_shape = x.size()[:-1] + (
344
  self.num_attention_heads,
@@ -359,13 +542,9 @@ class OmniGenomeSelfAttention(nn.Module):
359
  ) -> Tuple[torch.Tensor]:
360
  mixed_query_layer = self.query(hidden_states)
361
 
362
- # If this is instantiated as a cross-attention module, the keys
363
- # and values come from an encoder; the attention mask needs to be
364
- # such that the encoder's padding tokens are not attended to.
365
  is_cross_attention = encoder_hidden_states is not None
366
 
367
  if is_cross_attention and past_key_value is not None:
368
- # reuse k,v, cross_attentions
369
  key_layer = past_key_value[0]
370
  value_layer = past_key_value[1]
371
  attention_mask = encoder_attention_mask
@@ -384,95 +563,75 @@ class OmniGenomeSelfAttention(nn.Module):
384
 
385
  query_layer = self.transpose_for_scores(mixed_query_layer)
386
 
387
- # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
388
- # OmniGenome scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
389
- # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
390
- # OmniGenome code and fix rotary embeddings.
391
- query_layer = query_layer * self.attention_head_size ** -0.5
392
-
393
  if self.is_decoder:
394
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
395
- # Further calls to cross_attention layer can then reuse all cross-attention
396
- # key/value_states (first "if" case)
397
- # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
398
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
399
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
400
- # if encoder bi-directional self-attention `past_key_value` is always `None`
401
  past_key_value = (key_layer, value_layer)
402
 
403
- if self.position_embedding_type == "rotary":
 
 
 
404
  query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
405
 
406
- # Take the dot product between "query" and "key" to get the raw attention scores.
407
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
408
-
409
- if (
410
- self.position_embedding_type == "relative_key"
411
- or self.position_embedding_type == "relative_key_query"
412
- ):
413
- seq_length = hidden_states.size()[1]
414
- position_ids_l = torch.arange(
415
- seq_length, dtype=torch.long, device=hidden_states.device
416
- ).view(-1, 1)
417
- position_ids_r = torch.arange(
418
- seq_length, dtype=torch.long, device=hidden_states.device
419
- ).view(1, -1)
420
- distance = position_ids_l - position_ids_r
421
- positional_embedding = self.distance_embedding(
422
- distance + self.max_position_embeddings - 1
423
  )
424
- positional_embedding = positional_embedding.to(
425
- dtype=query_layer.dtype
426
- ) # fp16 compatibility
427
 
428
- if self.position_embedding_type == "relative_key":
429
- relative_position_scores = torch.einsum(
430
- "bhld,lrd->bhlr", query_layer, positional_embedding
431
- )
432
- attention_scores = attention_scores + relative_position_scores
433
- elif self.position_embedding_type == "relative_key_query":
434
- relative_position_scores_query = torch.einsum(
435
- "bhld,lrd->bhlr", query_layer, positional_embedding
436
- )
437
- relative_position_scores_key = torch.einsum(
438
- "bhrd,lrd->bhlr", key_layer, positional_embedding
439
- )
440
- attention_scores = (
441
- attention_scores
442
- + relative_position_scores_query
443
- + relative_position_scores_key
444
- )
445
 
446
- if attention_mask is not None:
447
- # Apply the attention mask is (precomputed for all layers in OmniGenomeModel forward() function)
448
- attention_scores = attention_scores + attention_mask
 
 
 
 
 
 
 
 
 
449
 
450
- # Normalize the attention scores to probabilities.
451
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
 
 
 
 
 
452
 
453
- # This is actually dropping out entire tokens to attend to, which might
454
- # seem a bit unusual, but is taken from the original Transformer paper.
455
- attention_probs = self.dropout(attention_probs)
456
 
457
- # Mask heads if we want to
458
- if head_mask is not None:
459
- attention_probs = attention_probs * head_mask
460
 
461
- context_layer = torch.matmul(attention_probs, value_layer)
 
 
 
462
 
463
  context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
464
  new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
465
  context_layer = context_layer.view(new_context_layer_shape)
466
 
467
- outputs = (
468
- (context_layer, attention_probs) if output_attentions else (context_layer,)
469
- )
470
-
471
  if self.is_decoder:
472
  outputs = outputs + (past_key_value,)
473
  return outputs
474
 
475
-
476
  # Copied from transformers.models.esm.modeling_esm.EsmSelfOutput with Esm->OmniGenome
477
  class OmniGenomeSelfOutput(nn.Module):
478
  def __init__(self, config):
@@ -530,6 +689,7 @@ class OmniGenomeAttention(nn.Module):
530
  output_attentions=False,
531
  ):
532
  hidden_states_ln = self.LayerNorm(hidden_states)
 
533
  self_outputs = self.self(
534
  hidden_states_ln,
535
  attention_mask,
@@ -1053,6 +1213,7 @@ class OmniGenomeModel(OmniGenomePreTrainedModel):
1053
  inputs_embeds=inputs_embeds,
1054
  past_key_values_length=past_key_values_length,
1055
  )
 
1056
  encoder_outputs = self.encoder(
1057
  embedding_output,
1058
  attention_mask=extended_attention_mask,
@@ -1117,7 +1278,7 @@ class OmniGenomeForMaskedLM(OmniGenomePreTrainedModel):
1117
 
1118
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1119
  self.lm_head = OmniGenomeLMHead(config)
1120
- # self.init_weights()
1121
 
1122
  def get_output_embeddings(self):
1123
  return self.lm_head.decoder
@@ -1237,7 +1398,7 @@ class OmniGenomeForSequenceClassification(OmniGenomePreTrainedModel):
1237
  self.config = config
1238
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1239
  self.classifier = OmniGenomeClassificationHead(config)
1240
- # self.init_weights()
1241
 
1242
  @add_start_docstrings_to_model_forward(
1243
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
@@ -1279,8 +1440,8 @@ class OmniGenomeForSequenceClassification(OmniGenomePreTrainedModel):
1279
  output_hidden_states=output_hidden_states,
1280
  return_dict=return_dict,
1281
  )
1282
- sequence_output = outputs[0]
1283
- logits = self.classifier(sequence_output)
1284
 
1285
  loss = None
1286
  if labels is not None:
@@ -1336,12 +1497,10 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1336
  super().__init__(config)
1337
  self.num_labels = config.num_labels
1338
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1339
- self.lm_head = OmniGenomeLMHead(config)
1340
  self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
1341
  self.classifier = torch.nn.Linear(self.config.hidden_size, self.num_labels)
1342
- self.activation = torch.nn.Tanh()
1343
- self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
1344
- # self.init_weights()
1345
 
1346
  @add_start_docstrings_to_model_forward(
1347
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
@@ -1367,12 +1526,12 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1367
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1368
  Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1369
  """
1370
-
1371
  return_dict = (
1372
  return_dict if return_dict is not None else self.config.use_return_dict
1373
  )
1374
-
1375
- mlm_outputs = self.OmniGenome(
1376
  input_ids,
1377
  attention_mask=attention_mask,
1378
  position_ids=position_ids,
@@ -1382,17 +1541,11 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1382
  output_hidden_states=output_hidden_states,
1383
  return_dict=return_dict,
1384
  )
1385
- try:
1386
- last_hidden_state = mlm_outputs[0]
1387
- last_hidden_state = self.dense(last_hidden_state)
1388
- except:
1389
- last_hidden_state = mlm_outputs.hidden_states[-1]
1390
- last_hidden_state = self.dense(last_hidden_state)
1391
 
 
 
1392
  logits = self.classifier(last_hidden_state)
1393
- logits = torch.softmax(logits, dim=-1)
1394
- logits = self.activation(logits)
1395
- logits = self.dropout(logits)
1396
 
1397
  loss = None
1398
  if labels is not None:
@@ -1400,14 +1553,14 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1400
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1401
 
1402
  if not return_dict:
1403
- output = (logits,) + mlm_outputs[2:]
1404
  return ((loss,) + output) if loss is not None else output
1405
 
1406
  return TokenClassifierOutput(
1407
  loss=loss,
1408
  logits=logits,
1409
- hidden_states=mlm_outputs.hidden_states,
1410
- attentions=mlm_outputs.attentions,
1411
  )
1412
 
1413
  @staticmethod
@@ -1433,15 +1586,26 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1433
 
1434
  return structure
1435
 
1436
- def predict_structure(
1437
  self,
1438
- input_ids: Optional[torch.LongTensor] = None,
1439
- attention_mask: Optional[torch.Tensor] = None,
1440
  **kwargs
1441
  ) -> List[str]:
 
 
 
1442
  """
1443
- Predicts the secondary structure of a sequence given the logits and attention mask.
1444
- """
 
 
 
 
 
 
 
 
 
1445
  outputs = self.forward(input_ids, attention_mask, **kwargs)
1446
 
1447
  logits = torch.argmax(outputs.logits, dim=-1)
@@ -1458,18 +1622,26 @@ class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
1458
 
1459
  @add_start_docstrings(
1460
  """
1461
- OmniGenome Model with a simple genetic algorithm based RNA design head on top.
 
1462
  """,
1463
  OmniGenome_START_DOCSTRING,
1464
  )
1465
- class OmniGenomeMaskedLMForRNADesign(OmniGenomePreTrainedModel):
1466
  def __init__(self, config):
1467
  super().__init__(config)
1468
  self.num_labels = config.num_labels
1469
- self.OmniGenome = OmniGenomeForMaskedLM(config)
 
1470
  self.num_generation = config.num_generation
1471
  self.num_population = config.num_population
1472
- # self.init_weights()
 
 
 
 
 
 
1473
 
1474
  @add_start_docstrings_to_model_forward(
1475
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
@@ -1495,43 +1667,199 @@ class OmniGenomeMaskedLMForRNADesign(OmniGenomePreTrainedModel):
1495
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1496
  Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1497
  """
1498
- return_dict = (
1499
- return_dict if return_dict is not None else self.config.use_return_dict
1500
- )
1501
-
1502
- outputs = self.OmniGenome(
1503
- input_ids,
1504
- attention_mask=attention_mask,
1505
- position_ids=position_ids,
1506
- head_mask=head_mask,
1507
- inputs_embeds=inputs_embeds,
1508
- output_attentions=output_attentions,
1509
- output_hidden_states=output_hidden_states,
1510
- return_dict=return_dict,
1511
- )
1512
-
1513
- sequence_output = outputs[0]
1514
-
1515
- sequence_output = self.dropout(sequence_output)
1516
- logits = self.classifier(sequence_output)
1517
 
1518
- loss = None
1519
- if labels is not None:
1520
- loss_fct = CrossEntropyLoss()
1521
-
1522
- labels = labels.to(logits.device)
1523
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1524
-
1525
- if not return_dict:
1526
- output = (logits,) + outputs[2:]
1527
- return ((loss,) + output) if loss is not None else output
1528
-
1529
- return TokenClassifierOutput(
1530
- loss=loss,
1531
- logits=logits,
1532
- hidden_states=outputs.hidden_states,
1533
- attentions=outputs.attentions,
1534
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
 
1536
 
1537
  # Copied from transformers.models.esm.modeling_esm.EsmClassificationHead with Esm->OmniGenome
 
15
  """ PyTorch OmniGenome model."""
16
 
17
  import math
18
+ import random
19
+ import warnings
20
  from typing import List, Optional, Tuple, Union
21
 
22
+ import numpy as np
23
  import torch
24
  import torch.utils.checkpoint
25
  from torch import nn
 
303
  )
304
  return position_ids.unsqueeze(0).expand(input_shape)
305
 
306
+ #
307
+ # # Copied from transformers.models.esm.modeling_esm.EsmSelfAttention with Esm->OmniGenome
308
+ # class OmniGenomeSelfAttention(nn.Module):
309
+ # def __init__(self, config, position_embedding_type=None):
310
+ # super().__init__()
311
+ # if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
312
+ # config, "embedding_size"
313
+ # ):
314
+ # raise ValueError(
315
+ # f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
316
+ # f"heads ({config.num_attention_heads})"
317
+ # )
318
+ #
319
+ # self.num_attention_heads = config.num_attention_heads
320
+ # self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
321
+ # self.all_head_size = self.num_attention_heads * self.attention_head_size
322
+ #
323
+ # self.query = nn.Linear(config.hidden_size, self.all_head_size)
324
+ # self.key = nn.Linear(config.hidden_size, self.all_head_size)
325
+ # self.value = nn.Linear(config.hidden_size, self.all_head_size)
326
+ #
327
+ # self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
328
+ # self.position_embedding_type = position_embedding_type or getattr(
329
+ # config, "position_embedding_type", "absolute"
330
+ # )
331
+ # self.rotary_embeddings = None
332
+ # if (
333
+ # self.position_embedding_type == "relative_key"
334
+ # or self.position_embedding_type == "relative_key_query"
335
+ # ):
336
+ # self.max_position_embeddings = config.max_position_embeddings
337
+ # self.distance_embedding = nn.Embedding(
338
+ # 2 * config.max_position_embeddings - 1, self.attention_head_size
339
+ # )
340
+ # elif self.position_embedding_type == "rotary":
341
+ # self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
342
+ #
343
+ # self.is_decoder = config.is_decoder
344
+ #
345
+ # def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
346
+ # new_x_shape = x.size()[:-1] + (
347
+ # self.num_attention_heads,
348
+ # self.attention_head_size,
349
+ # )
350
+ # x = x.view(new_x_shape)
351
+ # return x.permute(0, 2, 1, 3)
352
+ #
353
+ # def forward(
354
+ # self,
355
+ # hidden_states: torch.Tensor,
356
+ # attention_mask: Optional[torch.FloatTensor] = None,
357
+ # head_mask: Optional[torch.FloatTensor] = None,
358
+ # encoder_hidden_states: Optional[torch.FloatTensor] = None,
359
+ # encoder_attention_mask: Optional[torch.FloatTensor] = None,
360
+ # past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
361
+ # output_attentions: Optional[bool] = False,
362
+ # ) -> Tuple[torch.Tensor]:
363
+ # mixed_query_layer = self.query(hidden_states)
364
+ #
365
+ # # If this is instantiated as a cross-attention module, the keys
366
+ # # and values come from an encoder; the attention mask needs to be
367
+ # # such that the encoder's padding tokens are not attended to.
368
+ # is_cross_attention = encoder_hidden_states is not None
369
+ #
370
+ # if is_cross_attention and past_key_value is not None:
371
+ # # reuse k,v, cross_attentions
372
+ # key_layer = past_key_value[0]
373
+ # value_layer = past_key_value[1]
374
+ # attention_mask = encoder_attention_mask
375
+ # elif is_cross_attention:
376
+ # key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
377
+ # value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
378
+ # attention_mask = encoder_attention_mask
379
+ # elif past_key_value is not None:
380
+ # key_layer = self.transpose_for_scores(self.key(hidden_states))
381
+ # value_layer = self.transpose_for_scores(self.value(hidden_states))
382
+ # key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
383
+ # value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
384
+ # else:
385
+ # key_layer = self.transpose_for_scores(self.key(hidden_states))
386
+ # value_layer = self.transpose_for_scores(self.value(hidden_states))
387
+ #
388
+ # query_layer = self.transpose_for_scores(mixed_query_layer)
389
+ #
390
+ # # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
391
+ # # OmniGenome scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
392
+ # # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
393
+ # # OmniGenome code and fix rotary embeddings.
394
+ # query_layer = query_layer * self.attention_head_size ** -0.5
395
+ #
396
+ # if self.is_decoder:
397
+ # # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
398
+ # # Further calls to cross_attention layer can then reuse all cross-attention
399
+ # # key/value_states (first "if" case)
400
+ # # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
401
+ # # all previous decoder key/value_states. Further calls to uni-directional self-attention
402
+ # # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
403
+ # # if encoder bi-directional self-attention `past_key_value` is always `None`
404
+ # past_key_value = (key_layer, value_layer)
405
+ #
406
+ # if self.position_embedding_type == "rotary":
407
+ # query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
408
+ #
409
+ # # Take the dot product between "query" and "key" to get the raw attention scores.
410
+ # attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
411
+ #
412
+ # if (
413
+ # self.position_embedding_type == "relative_key"
414
+ # or self.position_embedding_type == "relative_key_query"
415
+ # ):
416
+ # seq_length = hidden_states.size()[1]
417
+ # position_ids_l = torch.arange(
418
+ # seq_length, dtype=torch.long, device=hidden_states.device
419
+ # ).view(-1, 1)
420
+ # position_ids_r = torch.arange(
421
+ # seq_length, dtype=torch.long, device=hidden_states.device
422
+ # ).view(1, -1)
423
+ # distance = position_ids_l - position_ids_r
424
+ # positional_embedding = self.distance_embedding(
425
+ # distance + self.max_position_embeddings - 1
426
+ # )
427
+ # positional_embedding = positional_embedding.to(
428
+ # dtype=query_layer.dtype
429
+ # ) # fp16 compatibility
430
+ #
431
+ # if self.position_embedding_type == "relative_key":
432
+ # relative_position_scores = torch.einsum(
433
+ # "bhld,lrd->bhlr", query_layer, positional_embedding
434
+ # )
435
+ # attention_scores = attention_scores + relative_position_scores
436
+ # elif self.position_embedding_type == "relative_key_query":
437
+ # relative_position_scores_query = torch.einsum(
438
+ # "bhld,lrd->bhlr", query_layer, positional_embedding
439
+ # )
440
+ # relative_position_scores_key = torch.einsum(
441
+ # "bhrd,lrd->bhlr", key_layer, positional_embedding
442
+ # )
443
+ # attention_scores = (
444
+ # attention_scores
445
+ # + relative_position_scores_query
446
+ # + relative_position_scores_key
447
+ # )
448
+ #
449
+ # if attention_mask is not None:
450
+ # # Apply the attention mask is (precomputed for all layers in OmniGenomeModel forward() function)
451
+ # attention_scores = attention_scores + attention_mask
452
+ #
453
+ # # Normalize the attention scores to probabilities.
454
+ # attention_probs = nn.functional.softmax(attention_scores, dim=-1)
455
+ #
456
+ # # This is actually dropping out entire tokens to attend to, which might
457
+ # # seem a bit unusual, but is taken from the original Transformer paper.
458
+ # attention_probs = self.dropout(attention_probs)
459
+ #
460
+ # # Mask heads if we want to
461
+ # if head_mask is not None:
462
+ # attention_probs = attention_probs * head_mask
463
+ #
464
+ # context_layer = torch.matmul(attention_probs, value_layer)
465
+ #
466
+ # context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
467
+ # new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
468
+ # context_layer = context_layer.view(new_context_layer_shape)
469
+ #
470
+ # outputs = (
471
+ # (context_layer, attention_probs) if output_attentions else (context_layer,)
472
+ # )
473
+ #
474
+ # if self.is_decoder:
475
+ # outputs = outputs + (past_key_value,)
476
+ # return outputs
477
+
478
 
479
  # Copied from transformers.models.esm.modeling_esm.EsmSelfAttention with Esm->OmniGenome
480
  class OmniGenomeSelfAttention(nn.Module):
 
514
 
515
  self.is_decoder = config.is_decoder
516
 
517
+ # FlashAttention parameters
518
+ self.enable_flash_attn = getattr(config, "use_flash_attention", True)
519
+ if self.enable_flash_attn:
520
+ from flash_attn import flash_attn_func
521
+ self.flash_attn_func = flash_attn_func
522
+ else:
523
+ self.flash_attn_func = None
524
+
525
  def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
526
  new_x_shape = x.size()[:-1] + (
527
  self.num_attention_heads,
 
542
  ) -> Tuple[torch.Tensor]:
543
  mixed_query_layer = self.query(hidden_states)
544
 
 
 
 
545
  is_cross_attention = encoder_hidden_states is not None
546
 
547
  if is_cross_attention and past_key_value is not None:
 
548
  key_layer = past_key_value[0]
549
  value_layer = past_key_value[1]
550
  attention_mask = encoder_attention_mask
 
563
 
564
  query_layer = self.transpose_for_scores(mixed_query_layer)
565
 
 
 
 
 
 
 
566
  if self.is_decoder:
 
 
 
 
 
 
 
567
  past_key_value = (key_layer, value_layer)
568
 
569
+ # 使用FlashAttention的条件判断
570
+ use_flash_attn = self.enable_flash_attn and self.position_embedding_type == "rotary"
571
+ if use_flash_attn:
572
+ # 应用旋转位置编码
573
  query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
574
 
575
+ # 调整维度顺序为 [batch_size, seq_len, num_heads, head_dim]
576
+ q = query_layer.transpose(1, 2).half()
577
+ k = key_layer.transpose(1, 2).half()
578
+ v = value_layer.transpose(1, 2).half()
579
+
580
+ # 使用FlashAttention计算
581
+ context_layer = self.flash_attn_func(
582
+ q, k, v,
583
+ dropout_p=self.dropout.p if self.training else 0.0,
584
+ softmax_scale=self.attention_head_size ** -0.5,
585
+ causal=self.is_decoder
 
 
 
 
 
 
586
  )
 
 
 
587
 
588
+ # 恢复维度顺序 [batch_size, num_heads, seq_len, head_dim]
589
+ context_layer = context_layer.transpose(1, 2).to(hidden_states.dtype)
590
+ else:
591
+ # 原始实现
592
+ query_layer = query_layer * self.attention_head_size ** -0.5
 
 
 
 
 
 
 
 
 
 
 
 
593
 
594
+ if self.position_embedding_type == "rotary":
595
+ query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
596
+
597
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
598
+
599
+ if self.position_embedding_type in ["relative_key", "relative_key_query"]:
600
+ seq_length = hidden_states.size()[1]
601
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
602
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
603
+ distance = position_ids_l - position_ids_r
604
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
605
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype)
606
 
607
+ if self.position_embedding_type == "relative_key":
608
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
609
+ attention_scores = attention_scores + relative_position_scores
610
+ elif self.position_embedding_type == "relative_key_query":
611
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
612
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
613
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
614
 
615
+ if attention_mask is not None:
616
+ attention_scores = attention_scores + attention_mask
 
617
 
618
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
619
+ attention_probs = self.dropout(attention_probs)
 
620
 
621
+ if head_mask is not None:
622
+ attention_probs = attention_probs * head_mask
623
+
624
+ context_layer = torch.matmul(attention_probs, value_layer)
625
 
626
  context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
627
  new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
628
  context_layer = context_layer.view(new_context_layer_shape)
629
 
630
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
 
 
 
631
  if self.is_decoder:
632
  outputs = outputs + (past_key_value,)
633
  return outputs
634
 
 
635
  # Copied from transformers.models.esm.modeling_esm.EsmSelfOutput with Esm->OmniGenome
636
  class OmniGenomeSelfOutput(nn.Module):
637
  def __init__(self, config):
 
689
  output_attentions=False,
690
  ):
691
  hidden_states_ln = self.LayerNorm(hidden_states)
692
+ hidden_states_ln = hidden_states_ln.to(hidden_states.dtype)
693
  self_outputs = self.self(
694
  hidden_states_ln,
695
  attention_mask,
 
1213
  inputs_embeds=inputs_embeds,
1214
  past_key_values_length=past_key_values_length,
1215
  )
1216
+ embedding_output = embedding_output.half()
1217
  encoder_outputs = self.encoder(
1218
  embedding_output,
1219
  attention_mask=extended_attention_mask,
 
1278
 
1279
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1280
  self.lm_head = OmniGenomeLMHead(config)
1281
+ self.init_weights()
1282
 
1283
  def get_output_embeddings(self):
1284
  return self.lm_head.decoder
 
1398
  self.config = config
1399
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1400
  self.classifier = OmniGenomeClassificationHead(config)
1401
+ self.init_weights()
1402
 
1403
  @add_start_docstrings_to_model_forward(
1404
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
 
1440
  output_hidden_states=output_hidden_states,
1441
  return_dict=return_dict,
1442
  )
1443
+ last_hidden_state = outputs[0]
1444
+ logits = self.classifier(last_hidden_state)
1445
 
1446
  loss = None
1447
  if labels is not None:
 
1497
  super().__init__(config)
1498
  self.num_labels = config.num_labels
1499
  self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
 
1500
  self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
1501
  self.classifier = torch.nn.Linear(self.config.hidden_size, self.num_labels)
1502
+ self.softmax = nn.Softmax(dim=-1)
1503
+ self.init_weights()
 
1504
 
1505
  @add_start_docstrings_to_model_forward(
1506
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
 
1526
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1527
  Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1528
  """
1529
+
1530
  return_dict = (
1531
  return_dict if return_dict is not None else self.config.use_return_dict
1532
  )
1533
+
1534
+ outputs = self.OmniGenome(
1535
  input_ids,
1536
  attention_mask=attention_mask,
1537
  position_ids=position_ids,
 
1541
  output_hidden_states=output_hidden_states,
1542
  return_dict=return_dict,
1543
  )
 
 
 
 
 
 
1544
 
1545
+ last_hidden_state = outputs[0]
1546
+ last_hidden_state = self.dense(last_hidden_state)
1547
  logits = self.classifier(last_hidden_state)
1548
+ logits = self.softmax(logits)
 
 
1549
 
1550
  loss = None
1551
  if labels is not None:
 
1553
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1554
 
1555
  if not return_dict:
1556
+ output = (logits,) + outputs[2:]
1557
  return ((loss,) + output) if loss is not None else output
1558
 
1559
  return TokenClassifierOutput(
1560
  loss=loss,
1561
  logits=logits,
1562
+ hidden_states=outputs.hidden_states,
1563
+ attentions=outputs.attentions,
1564
  )
1565
 
1566
  @staticmethod
 
1586
 
1587
  return structure
1588
 
1589
+ def predict_rna_structure(
1590
  self,
1591
+ sequence: str,
 
1592
  **kwargs
1593
  ) -> List[str]:
1594
+ r"""
1595
+ Load the pretrained OmniGenome Model to do zero-shot prediction of the secondary structure
1596
+ of a sequence given the sequence
1597
  """
1598
+ if self.tokenizer is None:
1599
+ tokenizer = kwargs.get("tokenizer", None)
1600
+ if tokenizer is None:
1601
+ from transformers import AutoTokenizer
1602
+ self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
1603
+ else:
1604
+ self.tokenizer = tokenizer
1605
+
1606
+ inputs = self.tokenizer(sequence, return_tensors="pt", padding="max_length", truncation=True)
1607
+ input_ids = inputs["input_ids"]
1608
+ attention_mask = inputs["attention_mask"]
1609
  outputs = self.forward(input_ids, attention_mask, **kwargs)
1610
 
1611
  logits = torch.argmax(outputs.logits, dim=-1)
 
1622
 
1623
  @add_start_docstrings(
1624
  """
1625
+ This is not a standard Seq2Seq model. Instead, this model is designed for RNA design tasks.
1626
+ This is the OmniGenome Model with a simple genetic algorithm based RNA design head on top.
1627
  """,
1628
  OmniGenome_START_DOCSTRING,
1629
  )
1630
+ class OmniGenomeModelForSeq2SeqLM(OmniGenomePreTrainedModel):
1631
  def __init__(self, config):
1632
  super().__init__(config)
1633
  self.num_labels = config.num_labels
1634
+ self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
1635
+ self.lm_head = OmniGenomeLMHead(config)
1636
  self.num_generation = config.num_generation
1637
  self.num_population = config.num_population
1638
+ self.init_weights()
1639
+
1640
+ self.tokenizer = None
1641
+ self.predict_structure = None
1642
+
1643
+ warnings.warn(f"This model {self.__class__.__name__} is not a real Seq2Seq model. "
1644
+ f"Instead, this model is designed for RNA design tasks")
1645
 
1646
  @add_start_docstrings_to_model_forward(
1647
  OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
 
1667
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1668
  Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1669
  """
1670
+ raise NotImplementedError("This model is not designed for standard Seq2Seq tasks. "
1671
+ "Use model.rna_sequence_design() for RNA sequences design instead.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672
 
1673
+ def rna_sequence_design(
1674
+ self,
1675
+ structure: str,
1676
+ predict_structure_func=None,
1677
+ **kwargs
1678
+ ) -> List[str]:
1679
+ """
1680
+ Assemble the RNA sequence given the reference sequence structure
1681
+ """
1682
+ if self.tokenizer is None:
1683
+ tokenizer = kwargs.get("tokenizer", None)
1684
+ if tokenizer is None:
1685
+ from transformers import AutoTokenizer
1686
+ self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
1687
+ else:
1688
+ self.tokenizer = tokenizer
1689
+
1690
+ candidates = self.genetic_algorithm_for_rna_design(structure, predict_structure_func=None, **kwargs)
1691
+
1692
+ return candidates
1693
+
1694
+ def genetic_algorithm_for_rna_design(self, structure, predict_structure_func=None, **kwargs):
1695
+ if predict_structure_func is None:
1696
+ import ViennaRNA
1697
+
1698
+ def predict_structure(sequence):
1699
+ return ViennaRNA.fold(sequence)[0]
1700
+
1701
+ predict_structure_func = predict_structure
1702
+
1703
+ self.predict_structure = predict_structure_func
1704
+ mutation_ratio = kwargs.get("mutation_ratio", 0.5)
1705
+ num_population = kwargs.get("num_population", self.num_population)
1706
+ num_generation = kwargs.get("num_generation", self.num_generation)
1707
+ import tqdm
1708
+ population = self.init_population(structure, num_population)
1709
+ population = self.mlm_mutate(population, structure, mutation_ratio=mutation_ratio)
1710
+ for generation_id in tqdm.tqdm(range(num_generation), desc="Designing RNA Sequence"):
1711
+ population_fitness = self.sequence_fitness(population, structure)[:num_population]
1712
+ population = sorted(zip(population, population_fitness), key=lambda x: x[1])[:num_population]
1713
+ population = [x[0] for x in population]
1714
+ next_generation = population # Elitism
1715
+ next_generation += self.crossover(population, structure)
1716
+ next_generation += self.mlm_mutate(next_generation, structure, mutation_ratio)
1717
+ fitness_values = self.sequence_fitness(next_generation, structure)
1718
+ next_generation = sorted(zip(next_generation, fitness_values), key=lambda x: x[1])
1719
+
1720
+ candidate_sequences = []
1721
+ for sequence, fitness in next_generation:
1722
+ if fitness == 0:
1723
+ candidate_sequences.append(sequence)
1724
+ else:
1725
+ break
1726
+ if candidate_sequences:
1727
+ return candidate_sequences
1728
+ print(f"Generation {generation_id}: {next_generation[0][0]} with fitness {next_generation[0][1]}")
1729
+ population = [x[0] for x in next_generation[:num_population]]
1730
+
1731
+ return []
1732
+
1733
+ def init_population(self, structure, num_population):
1734
+ # Initialize lists to store population data and inputs for masked language model
1735
+ population = []
1736
+ mlm_inputs = []
1737
+ # Iterate over the number of individuals in the population
1738
+ for _ in range(num_population): # Changed from self.num_population to num_population
1739
+ # Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
1740
+ masked_sequence = [
1741
+ random.choice(["A", "G", "C", "T", "<mask>"])
1742
+ for _ in range(len(structure))
1743
+ ]
1744
+ masked_sequence_str = "".join(masked_sequence)
1745
+ mlm_inputs.append(f"{masked_sequence_str}<eos>{''.join(structure)}")
1746
+
1747
+ # Call a function to predict outputs using the masked language model
1748
+ outputs = self.mlm_predict(mlm_inputs, structure)
1749
+
1750
+ # Decode the mlm outputs and construct the initial population
1751
+ for i in range(len(outputs)):
1752
+ sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
1753
+ fixed_sequence = [
1754
+ x if x in "AGCT" else random.choice(["G", "C"])
1755
+ for x, y in zip(sequence, list(mlm_inputs[i].replace('<mask>', '$')))
1756
+ ]
1757
+ population.append("".join(fixed_sequence))
1758
+
1759
+ return population
1760
+
1761
+ def mlm_mutate(self, population, structure, mutation_ratio):
1762
+ def mutate(sequence, mutation_rate):
1763
+ sequence = np.array(list(sequence), dtype=np.str_)
1764
+ probability_matrix = np.full(sequence.shape, mutation_rate)
1765
+ masked_indices = np.random.rand(*sequence.shape) < probability_matrix
1766
+ sequence[masked_indices] = "$"
1767
+ mut_seq = "".join(sequence.tolist()).replace("$", "<mask>")
1768
+ return mut_seq
1769
+
1770
+ # Initialize lists to store population data and inputs for masked language model
1771
+ mlm_inputs = []
1772
+ masked_sequences = []
1773
+
1774
+ # Iterate over the number of individuals in the population
1775
+ for sequence in population:
1776
+ # Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
1777
+ masked_sequence = mutate(sequence, mutation_ratio)
1778
+ masked_sequences.append(masked_sequence)
1779
+ mlm_inputs.append(f"{masked_sequence}<eos>{''.join(structure)}")
1780
+
1781
+ # Call a function to predict outputs using the masked language model
1782
+ outputs = self.mlm_predict(mlm_inputs, structure)
1783
+
1784
+ mut_population = []
1785
+
1786
+ # Decode the mlm outputs and construct the initial population
1787
+ for i in range(len(outputs)):
1788
+ sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
1789
+ fixed_sequence = [
1790
+ x if x in "AGCT" else random.choice(["G", "C"])
1791
+ for x, y in zip(sequence, list(masked_sequences[i].replace('<mask>', '$')))
1792
+ ]
1793
+ mut_population.append("".join(fixed_sequence))
1794
+
1795
+ return mut_population
1796
+
1797
+ def crossover(self, population, structure):
1798
+ crossover_population = []
1799
+ batch_crossover_inputs = []
1800
+ for i in range(len(population)):
1801
+ parent1, parent2 = random.choices(population, k=2)
1802
+ pos = random.randint(1, len(parent1) - 1)
1803
+ child1 = parent1[:pos] + "<mask>" * len(parent2[pos:])
1804
+ child2 = "<mask>" * len(parent1[:pos]) + parent2[pos:]
1805
+ batch_crossover_inputs.append(f"{child1}<eos>{structure}")
1806
+ batch_crossover_inputs.append(f"{child2}<eos>{structure}")
1807
+
1808
+ outputs = self.mlm_predict(batch_crossover_inputs, structure)
1809
+
1810
+ for i in range(len(outputs)):
1811
+ sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
1812
+ fixed_sequence = [
1813
+ x if x in "AGCT" else random.choice(["G", "C"])
1814
+ for x, y in zip(sequence, list(batch_crossover_inputs[i].replace('<mask>', '$')))
1815
+ ]
1816
+ crossover_population.append("".join(fixed_sequence))
1817
+
1818
+ return crossover_population
1819
+
1820
+ def sequence_fitness(self, sequences, structure):
1821
+ fitness_values = []
1822
+ structures = [self.predict_structure(sequence) for sequence in sequences]
1823
+ for predicted_structure in structures:
1824
+ scores = []
1825
+ for i in range(len(predicted_structure)):
1826
+ if predicted_structure[i] == structure[i]:
1827
+ scores.append(1)
1828
+ elif (
1829
+ predicted_structure[i] == ")"
1830
+ and structure[i] == "("
1831
+ or predicted_structure[i] == "("
1832
+ and structure[i] == ")"
1833
+ ):
1834
+ scores.append(-3)
1835
+ else:
1836
+ scores.append(0)
1837
+ score = 1 - sum(scores) / len(structure)
1838
+ fitness_values.append(score)
1839
+ return fitness_values
1840
+
1841
+ def mlm_predict(self, mlm_inputs, structure):
1842
+ batch_size = 4
1843
+ all_outputs = []
1844
+ from transformers import set_seed
1845
+ set_seed(random.randint(0, 99999999), deterministic=False)
1846
+
1847
+ with torch.no_grad():
1848
+ for i in range(0, len(mlm_inputs), batch_size):
1849
+ batch_mlm_inputs = self.tokenizer(
1850
+ mlm_inputs[i:i + batch_size],
1851
+ padding=True,
1852
+ max_length=len(mlm_inputs[0]) // 2,
1853
+ truncation=True,
1854
+ return_tensors="pt",
1855
+ )
1856
+ batch_mlm_inputs = batch_mlm_inputs.to(self.device)
1857
+ outputs = self.OmniGenome(**batch_mlm_inputs)[0]
1858
+ outputs = self.lm_head(outputs)
1859
+ outputs = outputs.argmax(dim=-1)
1860
+ all_outputs.append(outputs)
1861
+ outputs = torch.cat(all_outputs, dim=0)
1862
+ return outputs[:, 1:1 + len(structure)]
1863
 
1864
 
1865
  # Copied from transformers.models.esm.modeling_esm.EsmClassificationHead with Esm->OmniGenome