--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset-frequency results: [] --- # videomae-base-finetuned-ucf101-subset-frequency This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5657 - Accuracy: 0.7726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1480 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8818 | 0.1 | 148 | 0.5919 | 0.7111 | | 0.6337 | 1.1 | 296 | 0.5929 | 0.7111 | | 0.6245 | 2.1 | 444 | 0.7150 | 0.6085 | | 0.6549 | 3.1 | 592 | 0.6096 | 0.7556 | | 0.658 | 4.1 | 740 | 0.7169 | 0.6735 | | 0.6981 | 5.1 | 888 | 0.6050 | 0.7726 | | 0.619 | 6.1 | 1036 | 0.5278 | 0.7709 | | 0.6163 | 7.1 | 1184 | 0.5167 | 0.7778 | | 0.3778 | 8.1 | 1332 | 0.5298 | 0.7812 | | 0.5459 | 9.1 | 1480 | 0.5657 | 0.7726 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.0.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1