yahyaabd commited on
Commit
97edd48
·
verified ·
1 Parent(s): fe416f8

Upload model from local path: models\paraphrase-multilingual-miniLM-L12-v2-finetuned-bps-all

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:350
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Data pengeluaran bulanan rumah tangga pedesaan untuk konsumsi makanan
12
+ dan non-makanan per provinsi, tahun berapa saja tersedia?
13
+ sentences:
14
+ - Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 (84 x 84)
15
+ - Persentase RataRata Pengeluaran per Kapita Sebulan Untuk Makanan dan Bukan Makanan
16
+ di Daerah Perdesaan Menurut Provinsi, 2007-2024
17
+ - Nilai Impor Jawa Madura Menurut Pelabuhan Impor di Pulau Jawa Madura Tahun 2009
18
+ - 2013 (Juta US $) 1)
19
+ - source_sentence: Asal impor gula Indonesia periode 2017 hingga 2023
20
+ sentences:
21
+ - Banyaknya Anggota Kadinda Menurut Kabupaten/Kota di Provinsi Jawa Tengah, 2019
22
+ - Impor Gula menurut Negara Asal Utama, 2017-2023
23
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Kelompok Umur,
24
+ 2023
25
+ - source_sentence: Laju kehilangan hutan Indonesia dalam dan luar kawasan hutan 2013-2022.
26
+ sentences:
27
+ - Institusi Pemerintah Neraca Institusi Terintegrasi (Triliun Rupiah), 2016 2023
28
+ - Angka Deforestasi (Netto) Indonesia di Dalam dan di Luar Kawasan Hutan Tahun 2013-2022
29
+ (Ha/Th)
30
+ - Produksi Perkebunan Menurut Kabupaten/Kota dan Jenis Tanaman di Provinsi Jawa
31
+ Tengah (ton), 2021 dan 2022
32
+ - source_sentence: Kemana saja lada putih Indonesia diekspor pada periode 2012 sampai
33
+ 2023?
34
+ sentences:
35
+ - Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Kelompok Umur,
36
+ 2022-2023
37
+ - Ekspor Lada Putih menurut Negara Tujuan Utama, 2012-2023
38
+ - Angka Kelahiran Kasar (Crude Birth Rate) Hasil Long Form SP2020 Menurut Provinsi/Kabupaten/Kota,
39
+ 2020
40
+ - source_sentence: data gaji bersih pegawai per bulan tahun 2023 berdasarkan pendidikan
41
+ dan jenis pekerjaan utama
42
+ sentences:
43
+ - Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
44
+ yang Ditamatkan dan Jenis Pekerjaan Utama, 2023
45
+ - Banyaknya Kunjungan Kapal Melalui Pelabuhan Jepara Menurut Jenis Pelayaran Tahun
46
+ 2009 - 2013
47
+ - Ekspor Sarang Burung menurut Negara Tujuan Utama, 2012-2023
48
+ pipeline_tag: sentence-similarity
49
+ library_name: sentence-transformers
50
+ metrics:
51
+ - cosine_accuracy@1
52
+ - cosine_accuracy@3
53
+ - cosine_accuracy@5
54
+ - cosine_accuracy@10
55
+ - cosine_precision@1
56
+ - cosine_precision@3
57
+ - cosine_precision@5
58
+ - cosine_precision@10
59
+ - cosine_recall@1
60
+ - cosine_recall@3
61
+ - cosine_recall@5
62
+ - cosine_recall@10
63
+ - cosine_ndcg@10
64
+ - cosine_mrr@10
65
+ - cosine_map@100
66
+ model-index:
67
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
68
+ results:
69
+ - task:
70
+ type: information-retrieval
71
+ name: Information Retrieval
72
+ dataset:
73
+ name: bps val mfd all
74
+ type: bps-val-mfd-all
75
+ metrics:
76
+ - type: cosine_accuracy@1
77
+ value: 0.9861111111111112
78
+ name: Cosine Accuracy@1
79
+ - type: cosine_accuracy@3
80
+ value: 0.9861111111111112
81
+ name: Cosine Accuracy@3
82
+ - type: cosine_accuracy@5
83
+ value: 0.9861111111111112
84
+ name: Cosine Accuracy@5
85
+ - type: cosine_accuracy@10
86
+ value: 0.9861111111111112
87
+ name: Cosine Accuracy@10
88
+ - type: cosine_precision@1
89
+ value: 0.9861111111111112
90
+ name: Cosine Precision@1
91
+ - type: cosine_precision@3
92
+ value: 0.9351851851851851
93
+ name: Cosine Precision@3
94
+ - type: cosine_precision@5
95
+ value: 0.9055555555555554
96
+ name: Cosine Precision@5
97
+ - type: cosine_precision@10
98
+ value: 0.8333333333333334
99
+ name: Cosine Precision@10
100
+ - type: cosine_recall@1
101
+ value: 0.016151592322246593
102
+ name: Cosine Recall@1
103
+ - type: cosine_recall@3
104
+ value: 0.0425075387306992
105
+ name: Cosine Recall@3
106
+ - type: cosine_recall@5
107
+ value: 0.06836160354671791
108
+ name: Cosine Recall@5
109
+ - type: cosine_recall@10
110
+ value: 0.11202747994449548
111
+ name: Cosine Recall@10
112
+ - type: cosine_ndcg@10
113
+ value: 0.8706665539282586
114
+ name: Cosine Ndcg@10
115
+ - type: cosine_mrr@10
116
+ value: 0.9861111111111112
117
+ name: Cosine Mrr@10
118
+ - type: cosine_map@100
119
+ value: 0.44673547368787836
120
+ name: Cosine Map@100
121
+ ---
122
+
123
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
124
+
125
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
126
+
127
+ ## Model Details
128
+
129
+ ### Model Description
130
+ - **Model Type:** Sentence Transformer
131
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
132
+ - **Maximum Sequence Length:** 128 tokens
133
+ - **Output Dimensionality:** 384 dimensions
134
+ - **Similarity Function:** Cosine Similarity
135
+ - **Training Dataset:**
136
+ - csv
137
+ <!-- - **Language:** Unknown -->
138
+ <!-- - **License:** Unknown -->
139
+
140
+ ### Model Sources
141
+
142
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
143
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
144
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
145
+
146
+ ### Full Model Architecture
147
+
148
+ ```
149
+ SentenceTransformer(
150
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
151
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
152
+ )
153
+ ```
154
+
155
+ ## Usage
156
+
157
+ ### Direct Usage (Sentence Transformers)
158
+
159
+ First install the Sentence Transformers library:
160
+
161
+ ```bash
162
+ pip install -U sentence-transformers
163
+ ```
164
+
165
+ Then you can load this model and run inference.
166
+ ```python
167
+ from sentence_transformers import SentenceTransformer
168
+
169
+ # Download from the 🤗 Hub
170
+ model = SentenceTransformer("sentence_transformers_model_id")
171
+ # Run inference
172
+ sentences = [
173
+ 'data gaji bersih pegawai per bulan tahun 2023 berdasarkan pendidikan dan jenis pekerjaan utama',
174
+ 'Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi yang Ditamatkan dan Jenis Pekerjaan Utama, 2023',
175
+ 'Banyaknya Kunjungan Kapal Melalui Pelabuhan Jepara Menurut Jenis Pelayaran Tahun 2009 - 2013',
176
+ ]
177
+ embeddings = model.encode(sentences)
178
+ print(embeddings.shape)
179
+ # [3, 384]
180
+
181
+ # Get the similarity scores for the embeddings
182
+ similarities = model.similarity(embeddings, embeddings)
183
+ print(similarities.shape)
184
+ # [3, 3]
185
+ ```
186
+
187
+ <!--
188
+ ### Direct Usage (Transformers)
189
+
190
+ <details><summary>Click to see the direct usage in Transformers</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Downstream Usage (Sentence Transformers)
197
+
198
+ You can finetune this model on your own dataset.
199
+
200
+ <details><summary>Click to expand</summary>
201
+
202
+ </details>
203
+ -->
204
+
205
+ <!--
206
+ ### Out-of-Scope Use
207
+
208
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
209
+ -->
210
+
211
+ ## Evaluation
212
+
213
+ ### Metrics
214
+
215
+ #### Information Retrieval
216
+
217
+ * Dataset: `bps-val-mfd-all`
218
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
219
+
220
+ | Metric | Value |
221
+ |:--------------------|:-----------|
222
+ | cosine_accuracy@1 | 0.9861 |
223
+ | cosine_accuracy@3 | 0.9861 |
224
+ | cosine_accuracy@5 | 0.9861 |
225
+ | cosine_accuracy@10 | 0.9861 |
226
+ | cosine_precision@1 | 0.9861 |
227
+ | cosine_precision@3 | 0.9352 |
228
+ | cosine_precision@5 | 0.9056 |
229
+ | cosine_precision@10 | 0.8333 |
230
+ | cosine_recall@1 | 0.0162 |
231
+ | cosine_recall@3 | 0.0425 |
232
+ | cosine_recall@5 | 0.0684 |
233
+ | cosine_recall@10 | 0.112 |
234
+ | **cosine_ndcg@10** | **0.8707** |
235
+ | cosine_mrr@10 | 0.9861 |
236
+ | cosine_map@100 | 0.4467 |
237
+
238
+ <!--
239
+ ## Bias, Risks and Limitations
240
+
241
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
242
+ -->
243
+
244
+ <!--
245
+ ### Recommendations
246
+
247
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
248
+ -->
249
+
250
+ ## Training Details
251
+
252
+ ### Training Dataset
253
+
254
+ #### csv
255
+
256
+ * Dataset: csv
257
+ * Size: 350 training samples
258
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
259
+ * Approximate statistics based on the first 350 samples:
260
+ | | query | positive | negative |
261
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
262
+ | type | string | string | string |
263
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.16 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 23.2 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.02 tokens</li><li>max: 59 tokens</li></ul> |
264
+ * Samples:
265
+ | query | positive | negative |
266
+ |:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|
267
+ | <code>Bagaimana pengeluaran rumah tangga per orang di Indonesia berubah dari 2010 sampai 2024?</code> | <code>Distribusi Pembagian Pengeluaran per Kapita dan Indeks Gini, 2010-2024</code> | <code>Proyeksi Beban Pencemaran Udara Menurut Industri di Jawa Tengah Tahun 2020 (Ton/Tahun)</code> |
268
+ | <code>Data kesenjangan pendapatan di Indonesia tahun 2010-2024: indeks Gini dan pengeluaran rata-rata.</code> | <code>Distribusi Pembagian Pengeluaran per Kapita dan Indeks Gini, 2010-2024</code> | <code>Banyaknya Mahasiswa dan Dosen Pada Perguruan Tinggi Agama Islam Swasta di Jawa Tengah, 2018/2019</code> |
269
+ | <code>Berapa konsumsi makanan pokok per orang per minggu di Indonesia tahun 2007-2024?</code> | <code>Rata-Rata Konsumsi per Kapita Seminggu Beberapa Macam Bahan Makanan Penting, 2007-2024</code> | <code>Rekapitulasi Industri Non Formal Yang Baru Menurut Kabupaten/kota 2012</code> |
270
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
271
+ ```json
272
+ {
273
+ "scale": 20.0,
274
+ "similarity_fct": "cos_sim"
275
+ }
276
+ ```
277
+
278
+ ### Training Hyperparameters
279
+ #### Non-Default Hyperparameters
280
+
281
+ - `eval_strategy`: steps
282
+ - `per_device_train_batch_size`: 32
283
+ - `per_device_eval_batch_size`: 32
284
+ - `weight_decay`: 0.01
285
+ - `warmup_ratio`: 0.1
286
+ - `fp16`: True
287
+ - `load_best_model_at_end`: True
288
+
289
+ #### All Hyperparameters
290
+ <details><summary>Click to expand</summary>
291
+
292
+ - `overwrite_output_dir`: False
293
+ - `do_predict`: False
294
+ - `eval_strategy`: steps
295
+ - `prediction_loss_only`: True
296
+ - `per_device_train_batch_size`: 32
297
+ - `per_device_eval_batch_size`: 32
298
+ - `per_gpu_train_batch_size`: None
299
+ - `per_gpu_eval_batch_size`: None
300
+ - `gradient_accumulation_steps`: 1
301
+ - `eval_accumulation_steps`: None
302
+ - `torch_empty_cache_steps`: None
303
+ - `learning_rate`: 5e-05
304
+ - `weight_decay`: 0.01
305
+ - `adam_beta1`: 0.9
306
+ - `adam_beta2`: 0.999
307
+ - `adam_epsilon`: 1e-08
308
+ - `max_grad_norm`: 1.0
309
+ - `num_train_epochs`: 3
310
+ - `max_steps`: -1
311
+ - `lr_scheduler_type`: linear
312
+ - `lr_scheduler_kwargs`: {}
313
+ - `warmup_ratio`: 0.1
314
+ - `warmup_steps`: 0
315
+ - `log_level`: passive
316
+ - `log_level_replica`: warning
317
+ - `log_on_each_node`: True
318
+ - `logging_nan_inf_filter`: True
319
+ - `save_safetensors`: True
320
+ - `save_on_each_node`: False
321
+ - `save_only_model`: False
322
+ - `restore_callback_states_from_checkpoint`: False
323
+ - `no_cuda`: False
324
+ - `use_cpu`: False
325
+ - `use_mps_device`: False
326
+ - `seed`: 42
327
+ - `data_seed`: None
328
+ - `jit_mode_eval`: False
329
+ - `use_ipex`: False
330
+ - `bf16`: False
331
+ - `fp16`: True
332
+ - `fp16_opt_level`: O1
333
+ - `half_precision_backend`: auto
334
+ - `bf16_full_eval`: False
335
+ - `fp16_full_eval`: False
336
+ - `tf32`: None
337
+ - `local_rank`: 0
338
+ - `ddp_backend`: None
339
+ - `tpu_num_cores`: None
340
+ - `tpu_metrics_debug`: False
341
+ - `debug`: []
342
+ - `dataloader_drop_last`: False
343
+ - `dataloader_num_workers`: 0
344
+ - `dataloader_prefetch_factor`: None
345
+ - `past_index`: -1
346
+ - `disable_tqdm`: False
347
+ - `remove_unused_columns`: True
348
+ - `label_names`: None
349
+ - `load_best_model_at_end`: True
350
+ - `ignore_data_skip`: False
351
+ - `fsdp`: []
352
+ - `fsdp_min_num_params`: 0
353
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
354
+ - `fsdp_transformer_layer_cls_to_wrap`: None
355
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
356
+ - `deepspeed`: None
357
+ - `label_smoothing_factor`: 0.0
358
+ - `optim`: adamw_torch
359
+ - `optim_args`: None
360
+ - `adafactor`: False
361
+ - `group_by_length`: False
362
+ - `length_column_name`: length
363
+ - `ddp_find_unused_parameters`: None
364
+ - `ddp_bucket_cap_mb`: None
365
+ - `ddp_broadcast_buffers`: False
366
+ - `dataloader_pin_memory`: True
367
+ - `dataloader_persistent_workers`: False
368
+ - `skip_memory_metrics`: True
369
+ - `use_legacy_prediction_loop`: False
370
+ - `push_to_hub`: False
371
+ - `resume_from_checkpoint`: None
372
+ - `hub_model_id`: None
373
+ - `hub_strategy`: every_save
374
+ - `hub_private_repo`: None
375
+ - `hub_always_push`: False
376
+ - `hub_revision`: None
377
+ - `gradient_checkpointing`: False
378
+ - `gradient_checkpointing_kwargs`: None
379
+ - `include_inputs_for_metrics`: False
380
+ - `include_for_metrics`: []
381
+ - `eval_do_concat_batches`: True
382
+ - `fp16_backend`: auto
383
+ - `push_to_hub_model_id`: None
384
+ - `push_to_hub_organization`: None
385
+ - `mp_parameters`:
386
+ - `auto_find_batch_size`: False
387
+ - `full_determinism`: False
388
+ - `torchdynamo`: None
389
+ - `ray_scope`: last
390
+ - `ddp_timeout`: 1800
391
+ - `torch_compile`: False
392
+ - `torch_compile_backend`: None
393
+ - `torch_compile_mode`: None
394
+ - `include_tokens_per_second`: False
395
+ - `include_num_input_tokens_seen`: False
396
+ - `neftune_noise_alpha`: None
397
+ - `optim_target_modules`: None
398
+ - `batch_eval_metrics`: False
399
+ - `eval_on_start`: False
400
+ - `use_liger_kernel`: False
401
+ - `liger_kernel_config`: None
402
+ - `eval_use_gather_object`: False
403
+ - `average_tokens_across_devices`: False
404
+ - `prompts`: None
405
+ - `batch_sampler`: batch_sampler
406
+ - `multi_dataset_batch_sampler`: proportional
407
+
408
+ </details>
409
+
410
+ ### Training Logs
411
+ | Epoch | Step | bps-val-mfd-all_cosine_ndcg@10 |
412
+ |:----------:|:------:|:------------------------------:|
413
+ | 0.9091 | 10 | 0.8300 |
414
+ | **1.8182** | **20** | **0.8736** |
415
+ | 2.7273 | 30 | 0.8707 |
416
+
417
+ * The bold row denotes the saved checkpoint.
418
+
419
+ ### Framework Versions
420
+ - Python: 3.10.11
421
+ - Sentence Transformers: 3.4.0
422
+ - Transformers: 4.53.1
423
+ - PyTorch: 2.7.1+cpu
424
+ - Accelerate: 1.8.1
425
+ - Datasets: 3.6.0
426
+ - Tokenizers: 0.21.2
427
+
428
+ ## Citation
429
+
430
+ ### BibTeX
431
+
432
+ #### Sentence Transformers
433
+ ```bibtex
434
+ @inproceedings{reimers-2019-sentence-bert,
435
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
436
+ author = "Reimers, Nils and Gurevych, Iryna",
437
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
438
+ month = "11",
439
+ year = "2019",
440
+ publisher = "Association for Computational Linguistics",
441
+ url = "https://arxiv.org/abs/1908.10084",
442
+ }
443
+ ```
444
+
445
+ #### MultipleNegativesRankingLoss
446
+ ```bibtex
447
+ @misc{henderson2017efficient,
448
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
449
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
450
+ year={2017},
451
+ eprint={1705.00652},
452
+ archivePrefix={arXiv},
453
+ primaryClass={cs.CL}
454
+ }
455
+ ```
456
+
457
+ <!--
458
+ ## Glossary
459
+
460
+ *Clearly define terms in order to be accessible across audiences.*
461
+ -->
462
+
463
+ <!--
464
+ ## Model Card Authors
465
+
466
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Contact
471
+
472
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
473
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.53.1",
5
+ "pytorch": "2.7.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:befcc36fc7d5417bd784bd3acdee9493f4a75e4f57f46da41930b7186d09a78c
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a815d88d776679933dd177bf05b8e549b01abede23e0d6669bd39afc3a22dc0
3
+ size 6033
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260