--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled results: [] --- # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5066 - Accuracy: 0.8165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015135649079170115 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.235 | 1.0 | 527 | 1.2949 | 0.8417 | | 0.565 | 2.0 | 1054 | 1.4198 | 0.8303 | | 0.4043 | 3.0 | 1581 | 1.5066 | 0.8165 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2