|
{ |
|
"best_metric": 0.8111545988258317, |
|
"best_model_checkpoint": "tiny-bert-sst2-distilled/run-21/checkpoint-1532", |
|
"epoch": 2.0, |
|
"eval_steps": 500, |
|
"global_step": 1532, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"grad_norm": 1.5445048809051514, |
|
"learning_rate": 0.0001354005618154073, |
|
"loss": 0.4902, |
|
"step": 766 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.7710371819960861, |
|
"eval_f1": 0.7943760984182776, |
|
"eval_loss": 0.4425993263721466, |
|
"eval_precision": 0.7208931419457735, |
|
"eval_recall": 0.8845401174168297, |
|
"eval_runtime": 133.7206, |
|
"eval_samples_per_second": 7.643, |
|
"eval_steps_per_second": 1.914, |
|
"step": 766 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"grad_norm": 6.882767677307129, |
|
"learning_rate": 0.00012035605494702872, |
|
"loss": 0.4409, |
|
"step": 1532 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.8111545988258317, |
|
"eval_f1": 0.8360237892948172, |
|
"eval_loss": 0.41539597511291504, |
|
"eval_precision": 0.7387387387387387, |
|
"eval_recall": 0.9628180039138943, |
|
"eval_runtime": 133.4678, |
|
"eval_samples_per_second": 7.657, |
|
"eval_steps_per_second": 1.918, |
|
"step": 1532 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 7660, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 10, |
|
"save_steps": 500, |
|
"total_flos": 471390394560.0, |
|
"train_batch_size": 4, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.7711149722361785, |
|
"learning_rate": 0.0001504450686837859, |
|
"num_train_epochs": 10, |
|
"temperature": 20 |
|
} |
|
} |
|
|