|
{ |
|
"best_metric": 0.5128712871287129, |
|
"best_model_checkpoint": "tiny-bert-sst2-distilled/run-2/checkpoint-594", |
|
"epoch": 2.0, |
|
"eval_steps": 500, |
|
"global_step": 594, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"grad_norm": 0.6258772015571594, |
|
"learning_rate": 1.171336966673164e-05, |
|
"loss": 0.303, |
|
"step": 297 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.4910891089108911, |
|
"eval_f1": 0.0, |
|
"eval_loss": 0.28316354751586914, |
|
"eval_mcc": -0.09980217586956908, |
|
"eval_precision": 0.0, |
|
"eval_recall": 0.0, |
|
"eval_runtime": 0.9281, |
|
"eval_samples_per_second": 544.113, |
|
"eval_steps_per_second": 17.239, |
|
"step": 297 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"grad_norm": 0.44756296277046204, |
|
"learning_rate": 1.0249198458390185e-05, |
|
"loss": 0.2807, |
|
"step": 594 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.5128712871287129, |
|
"eval_f1": 0.13986013986013984, |
|
"eval_loss": 0.2766987085342407, |
|
"eval_mcc": 0.047945551909639166, |
|
"eval_precision": 0.5882352941176471, |
|
"eval_recall": 0.07936507936507936, |
|
"eval_runtime": 0.9353, |
|
"eval_samples_per_second": 539.951, |
|
"eval_steps_per_second": 17.107, |
|
"step": 594 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 2673, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 9, |
|
"save_steps": 500, |
|
"total_flos": 1461402531960.0, |
|
"train_batch_size": 32, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.33782488262757904, |
|
"learning_rate": 1.3177540875073095e-05, |
|
"num_train_epochs": 9, |
|
"temperature": 26 |
|
} |
|
} |
|
|