|
{ |
|
"best_metric": 0.5753424657534246, |
|
"best_model_checkpoint": "tiny-bert-sst2-distilled/run-4/checkpoint-384", |
|
"epoch": 2.0, |
|
"eval_steps": 500, |
|
"global_step": 384, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"grad_norm": 0.896482527256012, |
|
"learning_rate": 2.4429947101690063e-05, |
|
"loss": 0.3642, |
|
"step": 192 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.525440313111546, |
|
"eval_f1": 0.14762741652021089, |
|
"eval_loss": 0.33992624282836914, |
|
"eval_mcc": 0.1099564814603399, |
|
"eval_precision": 0.7241379310344828, |
|
"eval_recall": 0.0821917808219178, |
|
"eval_runtime": 66.5832, |
|
"eval_samples_per_second": 15.349, |
|
"eval_steps_per_second": 0.481, |
|
"step": 192 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"grad_norm": 3.451338529586792, |
|
"learning_rate": 2.1376203713978805e-05, |
|
"loss": 0.3285, |
|
"step": 384 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.5753424657534246, |
|
"eval_f1": 0.31761006289308175, |
|
"eval_loss": 0.31206491589546204, |
|
"eval_mcc": 0.2299532209711479, |
|
"eval_precision": 0.808, |
|
"eval_recall": 0.19765166340508805, |
|
"eval_runtime": 66.7282, |
|
"eval_samples_per_second": 15.316, |
|
"eval_steps_per_second": 0.48, |
|
"step": 384 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 1728, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 9, |
|
"save_steps": 500, |
|
"total_flos": 471390394560.0, |
|
"train_batch_size": 16, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.4423735218743273, |
|
"learning_rate": 2.748369048940132e-05, |
|
"num_train_epochs": 9, |
|
"per_device_train_batch_size": 16, |
|
"temperature": 18 |
|
} |
|
} |
|
|