|
{ |
|
"best_metric": 0.6, |
|
"best_model_checkpoint": "tiny-bert-sst2-distilled/run-16/checkpoint-594", |
|
"epoch": 2.0, |
|
"eval_steps": 500, |
|
"global_step": 594, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"grad_norm": 1.6842290163040161, |
|
"learning_rate": 0.00013702102722124262, |
|
"loss": 0.6194, |
|
"step": 297 |
|
}, |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.5069306930693069, |
|
"eval_f1": 0.023529411764705882, |
|
"eval_loss": 0.6244187951087952, |
|
"eval_mcc": 0.07745844229442526, |
|
"eval_precision": 1.0, |
|
"eval_recall": 0.011904761904761904, |
|
"eval_runtime": 0.9461, |
|
"eval_samples_per_second": 533.75, |
|
"eval_steps_per_second": 16.911, |
|
"step": 297 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"grad_norm": 1.26532781124115, |
|
"learning_rate": 0.0001096168217769941, |
|
"loss": 0.6076, |
|
"step": 594 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.6, |
|
"eval_f1": 0.6366906474820144, |
|
"eval_loss": 0.6058114767074585, |
|
"eval_mcc": 0.20470740045924352, |
|
"eval_precision": 0.5822368421052632, |
|
"eval_recall": 0.7023809523809523, |
|
"eval_runtime": 0.946, |
|
"eval_samples_per_second": 533.844, |
|
"eval_steps_per_second": 16.914, |
|
"step": 594 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 1782, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 6, |
|
"save_steps": 500, |
|
"total_flos": 1461402531960.0, |
|
"train_batch_size": 32, |
|
"trial_name": null, |
|
"trial_params": { |
|
"alpha": 0.8675008492554994, |
|
"learning_rate": 0.00016442523266549115, |
|
"num_train_epochs": 6, |
|
"temperature": 44 |
|
} |
|
} |
|
|