File size: 1,566 Bytes
668bcd3 f4c3a41 668bcd3 f4c3a41 bf3ab05 f4c3a41 95c19bb f4c3a41 6b31aef f4c3a41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
language: en
tags:
- summarization
- medical
library_name: transformers
pipeline_tag: summarization
---
# Automatic Personalized Impression Generation for PET Reports Using Large Language Models πβ
**Authored by**: Xin Tie, Muheon Shin, Ali Pirasteh, Nevein Ibrahim, Zachary Huemann, Sharon M. Castellino, Kara Kelly, John Garrett, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw
[Read the full paper](https://arxiv.org/abs/2309.10066)
<!-- Link to our Arxiv paper -->
## π Model Description
This is the domain-adapted BARTScore for evaluating the quality of PET impressions.
To check our domain-adapted text-generation-based evaluation metrics:
- [BARTScore+PET](https://huggingface.co/xtie/BARTScore-PET)
- [PEGASUSScore+PET](https://huggingface.co/xtie/PEGASUSScore-PET)
- [T5+PET](https://huggingface.co/xtie/T5Score-PET)
## π Usage
Clone this GitHub repository in a local folder
```bash
git clone https://github.com/xtie97/PET-Report-Summarization.git
```
Go the the folder containing codes for computing BARTScore and create a new folder called "checkpoints"
```bash
cd ./PET-Report-Summarization/evaluation_metrics/metrics/BARTScore
mkdir checkpoints
mkdir checkpoints/bart-large
```
Download the model weights and put them in the folder "checkpoints/bart-large". Run the code for computing text-generation-based metrics
```
python compute_metrics_text_generation.py
```
## π Additional Resources
- **Codebase for evaluation metrics:** [GitHub](https://github.com/xtie97/PET-Report-Summarization/tree/main/evaluation_metrics)
---
|