--- library_name: xpmir --- # monoBERT trained on MS-Marco Passage Re-ranking with BERT (Rodrigo Nogueira, Kyunghyun Cho). 2019. https://arxiv.org/abs/1901.04085 This model has been trained on MsMarco v1 ## Using the model The model can be loaded with [experimaestro IR](https://experimaestro-ir.readthedocs.io/en/latest/) ```py from xpmir.models import AutoModel from xpmir.models import AutoModel # Model that can be re-used in experiments model = AutoModel.load_from_hf_hub("xpmir/monobert") # Use this if you want to actually use the model model = AutoModel.load_from_hf_hub("xpmir/monobert", as_instance=True) model.initialize() model.rsv("walgreens store sales average", "The average Walgreens salary ranges...") ``` ## Results | Dataset | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20 | |----| ---|------|------|------|------|------|------| | msmarco_dev | 0.3563 | 0.0367 | 0.3611 | 0.3515 | 0.4626 | 0.4127 | 0.4344 | | trec2019 | 0.4971 | 0.7163 | 0.9535 | 0.9535 | 0.6909 | 0.7081 | 0.6820 | | trec2020 | 0.4763 | 0.6120 | 0.9093 | 0.9080 | 0.6797 | 0.6816 | 0.6540 |