{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x797c4db05da0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x797c4db05e40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x797c4db05ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x797c4db05f80>", "_build": "<function ActorCriticPolicy._build at 0x797c4db06020>", "forward": "<function ActorCriticPolicy.forward at 0x797c4db060c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x797c4db06160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x797c4db06200>", "_predict": "<function ActorCriticPolicy._predict at 0x797c4db062a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x797c4db06340>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x797c4db063e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x797c4db06480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797c4dc6fd40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740148667804483077, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBKnb5hjfM9CVwcPfp1Hb5NAXS9K0vRvQAAAAAAAAAAWl46vqnscLxWvyO9Wa2Ju7Jn2T3VbFM8AACAPwAAgD/mUHu9wwFSug6XADZ8VeUwZXXbumk2JLUAAIA/AACAP/g1hL6f5eY8xPuWOv6igDwBIMi+ysdOPQAAAAAAAIA/zbycOlwDMLpw2ky5pnVCtI+0VTnOJ2c4AACAPwAAgD9mj6O9j6RSO8ipDb0Pgku+KVVrvcK6mz4AAIA/AAAAADMDZzukQEm55bnZuqAsZLa1lay6GpsAOgAAgD8AAIA/mizrvMN1C7qzrIm6LUCjta8ZLDtuOqI5AACAPwAAgD9AxMK94ZaBurD+YDoX7Re12D0Ju5tRgrkAAIA/AACAPy26TL57dPw5q4aCOjb4kbaY8S67CBGbuQAAgD8AAIA/Zv7nO2mrFz4wS1S+QLxAvqMdI704/3w9AAAAAAAAAADNDCw7SD23P5SiED0pB6s8sTMvvCw9AL0AAAAAAAAAAIB/ij2S6KM+EtMfvtOyWL6b/LU9k9bLPQAAAAAAAAAA+mKAvnIAZT/yFH+9RFmgvhxq6L3sS0o+AAAAAAAAAABm2KG89rRyulO/TTrCKzk2n/W3uqaQbLkAAIA/AACAP1qMhL3DaU26sG04ug3ONbXNtGA6BcJZOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGI5W0zCUHKMAWyUTegDjAF0lEdAj703PZ7HAHV9lChoBkdAYPLWzWwu/WgHTegDaAhHQI/C8nNPgvV1fZQoaAZHQGAkM7EHdGloB03oA2gIR0CPxA2NvOyFdX2UKGgGR0BiRKu6mO2iaAdN6ANoCEdAj8l0P6KtP3V9lChoBkdAZ2vNorWiDmgHTegDaAhHQI/1HB1s+FF1fZQoaAZHQGJvudPLxI9oB03oA2gIR0CP/l5X2dupdX2UKGgGR0BkDvdj5KvnaAdN6ANoCEdAkABZrP+n63V9lChoBkdAZhcomXw9aGgHTegDaAhHQJAAxyPuG9J1fZQoaAZHQGavXX7Lt/poB03oA2gIR0CQAN/RE4NrdX2UKGgGR0BiJ5je9Ba+aAdN6ANoCEdAkAT2QCCBgHV9lChoBkdAbL5xYq5LAmgHTbkBaAhHQJAK2dWhh6V1fZQoaAZHQGeoPU8V58loB03oA2gIR0CQCxIvrWy1dX2UKGgGR0BjVfHPu5SWaAdN6ANoCEdAkAz+AVfu1HV9lChoBkdATLaRGMGX5WgHTQwBaAhHQJANa/1xsEd1fZQoaAZHQGfyFImPYFtoB03oA2gIR0CQEIP9UCJXdX2UKGgGR0BdY4txuKoAaAdN6ANoCEdAkBSDnA6+4HV9lChoBkdATby9ugpSaWgHS+9oCEdAkBaZHVf/m3V9lChoBkdAYJ8dZJTVD2gHTegDaAhHQJAbZwVCXyB1fZQoaAZHQGUxQw9JSR9oB03oA2gIR0CQIbxIatLddX2UKGgGR0BdGvEKmbb2aAdN6ANoCEdAkCUtXcQAdXV9lChoBkdAZML81Gb1AmgHTegDaAhHQJApCX2M85l1fZQoaAZHQGPW88TzundoB03oA2gIR0CQLKdepn6EdX2UKGgGR0BlzKV8kUsWaAdN6ANoCEdAkEDzvd/KAHV9lChoBkdAcd9EsasIV2gHTbwDaAhHQJBDr1Iy0rt1fZQoaAZHQCO5O8CgbqBoB0v5aAhHQJBFGTSsr/d1fZQoaAZHQGO/EZ75VOtoB03oA2gIR0CQR3lyzXz2dX2UKGgGR0Bl9pew9q1xaAdN6ANoCEdAkEeUVnEl3XV9lChoBkdAYdE4iHIp6WgHTegDaAhHQJBMCRJVbRp1fZQoaAZHQGIVM+mm+CdoB03oA2gIR0CQUvW8RL9NdX2UKGgGR0BAEnS4OMESaAdL5GgIR0CQVCDf3vhIdX2UKGgGR0BkZ6Yb83uNaAdN6ANoCEdAkFXYBJZntnV9lChoBkdAYxTkNFz+32gHTegDaAhHQJBWaUwBYFJ1fZQoaAZHQGczHNX5nDloB03oA2gIR0CQWs30PH1fdX2UKGgGR0A3rHhCMPz4aAdNAgFoCEdAkFw633Hq/3V9lChoBkdAX2P1uivgWWgHTegDaAhHQJBe/EyckMV1fZQoaAZHQGX5Z3cHnlpoB03oA2gIR0CQYTZJkGzKdX2UKGgGR8AdJMIu5BkaaAdL7mgIR0CQY2btZ3cIdX2UKGgGR0BQVgLNOdoWaAdL+mgIR0CQZHvsJIDpdX2UKGgGR0BnRSLyc0+DaAdN6ANoCEdAkGYtFrl/6XV9lChoBkdAX570TURWcWgHTegDaAhHQJBtfgydnTR1fZQoaAZHQELEvUSZjQRoB0v+aAhHQJBtneCTUy51fZQoaAZHQG33EGA08/5oB02wAWgIR0CQcupjMFEBdX2UKGgGR0Bmot5rxiG4aAdN6ANoCEdAkHL43rD633V9lChoBkdAZWIJNTLntGgHTegDaAhHQJB2d0W/JvJ1fZQoaAZHQGWjf+sHSndoB03oA2gIR0CQjLHJcPe6dX2UKGgGR0Bl9TvRZ2ZBaAdN6ANoCEdAkI+wNb1RL3V9lChoBkdAY3N3i704BGgHTegDaAhHQJCRS9pRGc51fZQoaAZHQGXpfO+qR2doB03oA2gIR0CQk/OTJQtSdX2UKGgGR0BkCt8eCCjDaAdN6ANoCEdAkKDQ9RrJsHV9lChoBkdAYYtIuoP07WgHTegDaAhHQJCh3lyR0U51fZQoaAZHQHCRBvvSc9ZoB03iAmgIR0CQoxdgfEGadX2UKGgGR0A5L43m3fALaAdL/mgIR0CQo5xZMcp9dX2UKGgGR0BjNgWN3np0aAdN6ANoCEdAkKkSLAHminV9lChoBkdAY82q8UVSGmgHTegDaAhHQJCudPIn0Cl1fZQoaAZHQG6MRbr1M/RoB02EAmgIR0CQr3u7pV0cdX2UKGgGR0BgF3QF9roGaAdN6ANoCEdAkLC/Pw/gSHV9lChoBkdAXvt/iHZbp2gHTegDaAhHQJCz2pbUwzt1fZQoaAZHQGH5zkQwsXloB03oA2gIR0CQu8vkili0dX2UKGgGR0Bhjk9ZA6dUaAdN6ANoCEdAkLvrt/nW8XV9lChoBkdAJwhkqc3ERGgHTQkBaAhHQJC/40vXbud1fZQoaAZHQGRGIDYAbQ1oB03oA2gIR0CQwUabWmP6dX2UKGgGR0Bj0Ztix3V1aAdN6ANoCEdAkMFV0knkUHV9lChoBkdAYc+SamXPaGgHTegDaAhHQJDHlRCQcPx1fZQoaAZHQGVgAAyVObloB03oA2gIR0CQ3F2R7qptdX2UKGgGR0Bj5WKsMiKSaAdN6ANoCEdAkN3USZjQRnV9lChoBkdAY8A8L8aXKWgHTegDaAhHQJDugqTbFjx1fZQoaAZHQGgdY7A+IM1oB03oA2gIR0CQ72RqoIfKdX2UKGgGR0BhqJ7PY4ACaAdN6ANoCEdAkPB93KSxJXV9lChoBkdAZg0l/pdKNGgHTegDaAhHQJDw975VOsV1fZQoaAZHQGB/FYuCf6JoB03oA2gIR0CQ9c1kDp1SdX2UKGgGR0BunuBBiTdMaAdNzwNoCEdAkPmf4mCyyHV9lChoBkdAZc2kdmxt52gHTegDaAhHQJD9OrDIikh1fZQoaAZHQGHH4MnZ00ZoB03oA2gIR0CRABwb2lEadX2UKGgGR0BjIEnw5NoKaAdN6ANoCEdAkQbXwG4ZuXV9lChoBkdAZPh8pCrtFGgHTegDaAhHQJEG+HRCx/x1fZQoaAZHQGf/6V+qioNoB03oA2gIR0CRCs2m51/2dX2UKGgGR0Bj2Lz7MxGlaAdN6ANoCEdAkQwdvGZNPHV9lChoBkdAZq2gM+eOGWgHTegDaAhHQJEMK/SH/Ll1fZQoaAZHQGSzfiHZbpxoB03oA2gIR0CREZqh11W9dX2UKGgGR0BlWSpFTefqaAdN6ANoCEdAkSe8ZUDMeXV9lChoBkdAZpTkXDWK/GgHTegDaAhHQJEpNGAkLQZ1fZQoaAZHQDgIht+CsfdoB00lAWgIR0CRLKGC7K7qdX2UKGgGR0Bxn36uW8h+aAdNLAJoCEdAkS23GbTc7HV9lChoBkdAXDj7WNFSbmgHTegDaAhHQJE2RLSNOud1fZQoaAZHQGB8E8JUo8ZoB03oA2gIR0CRNxJNj9XLdX2UKGgGR0Bo+rq+rU9ZaAdN6ANoCEdAkTgKxs2vS3V9lChoBkdAVC+Eh7mdRWgHTegDaAhHQJE4e8tf5UN1fZQoaAZHQGTnbor4FidoB03oA2gIR0CRPRz/IbOvdX2UKGgGR0Bh41ucc2itaAdN6ANoCEdAkUDGxhUip3V9lChoBkdAcfwxAB1cMWgHTVoCaAhHQJFHJsl9jPR1fZQoaAZHQGMBOW8h9stoB03oA2gIR0CRSEdMTN+tdX2UKGgGR0BlLrt3OfNBaAdN6ANoCEdAkU/1sUIsy3V9lChoBkdAZA9sOXmeUmgHTegDaAhHQJFQFv1lGw11fZQoaAZHQGq9UV8CxNZoB005AWgIR0CRUF5aNdZ8dX2UKGgGR0BKosrupjtpaAdNAwFoCEdAkVFBs67ulXV9lChoBkdASR8vugHu7mgHS9poCEdAkVRXavicXnV9lChoBkdAYT6FpPAO8WgHTegDaAhHQJFU75O8Cgd1fZQoaAZHQGQdH6Mzdk9oB03oA2gIR0CRVPxd6cAjdX2UKGgGR0BiaI2XLNfPaAdN6ANoCEdAkVml+uvECXV9lChoBkdAQthwMpgCwWgHTRQBaAhHQJFcfohY/3Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |