xiaol commited on
Commit
cbd7077
·
1 Parent(s): 3400d46

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -4
README.md CHANGED
@@ -1,11 +1,75 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
4
- # Release date: 1.7
5
 
6
- This is 12B SOTA model
 
 
7
 
8
 
9
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6176b32847ee6431f632981e/HURIZi38S5qQeLvpiizHN.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- (to be continued...)
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - fr
5
+ - it
6
+ - de
7
+ - es
8
+ - en
9
+ - zh
10
+ inference: false
11
  ---
12
+ Copy from this [model card](https://huggingface.co/TimeMobius/Mobius-12B-base-m1)
13
 
14
+ # Model Card for Mobius-12B-base-m1
15
+ The Mobius-12B-base-m1 Large Language Model (LLM) is a pretrained model based on RWKV v5 arch.
16
+ We utilized 0.01 billion tokens to conduct post-training on this model for alignment benchmarks, excluding the utilization of SFT and DPO. The process took approximately 10 hours, employing 4 * a800.
17
 
18
 
19
+ ## Warning
20
+ This repo contains weights that are not compatible with Hugging Face [transformers](https://github.com/huggingface/transformers) library yet. But you can try this[PR](https://github.com/huggingface/transformers/pull/26963) as well.
21
+ [RWKV runner]() or [AI00 server]() also work.
22
+
23
+ ## Instruction|Chat format
24
+
25
+ This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
26
+
27
+ The template used to build a prompt for the Instruct model is defined as follows:
28
+ ```
29
+ User: {Instruction|prompt}\n\nAssistant:
30
+ ```
31
+
32
+ ## Run the model
33
+
34
+ [need to convert checkpoint to HF format](https://github.com/xiaol/RWKV-World-HF-Tokenizer?tab=readme-ov-file#huggingface-rwkv-world-model-convert)
35
+
36
+ Need to install this [PR](https://github.com/huggingface/transformers/pull/26963)
37
+ pip install -e git://github.com/BBuf/transformers.git
38
+
39
+ ```python
40
+ import torch
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+
43
+ model = AutoModelForCausalLM.from_pretrained("TimeMobius/Mobius-12B-base-m1", torch_dtype=torch.float16).to(0)
44
+ tokenizer = AutoTokenizer.from_pretrained("TimeMobius/Mobius-12B-base-m1", trust_remote_code=True)
45
+
46
+ text = "x"
47
+ prompt = f'Question: {text.strip()}\n\nAnswer:'
48
+
49
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
50
+ output = model.generate(inputs["input_ids"], max_new_tokens=40)
51
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
52
+ ```
53
+
54
+ ## Limitations
55
+
56
+ The Mobius base m1 is the base model can be easily fine-tuned to achieve compelling performance.
57
+ if you wanna better benchmark results use [DPO and SFT](https://github.com/BBuf/trl/pull/1) ,details in [readme](https://github.com/BBuf/trl/pull/1/files)
58
+
59
+ ### Benchmark
60
+
61
+ | Mobius-12B-base-m1 | |
62
+ |--------------------|----------|
63
+ | lambda ppl | 3.41 |
64
+ | lambda | 0.72 |
65
+ | piqa | 0.78 |
66
+ | hellaswag 10 shots | 0.72 |
67
+ | winogrande | 0.68 |
68
+ | arc_challenge 25shots | 0.47 |
69
+ | arc_easy | 0.73 |
70
+ | openbookqa | 0.40 |
71
+ | sciq | 0.93 |
72
+
73
+
74
+ # @TimeMobius
75