File size: 24,467 Bytes
80c9a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc80e7
80c9a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc80e7
80c9a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
from transformers import PreTrainedModel
from .configuration_yags import GPTSoVITSConfig

import os
import re
import LangSegment
import torch
import librosa
import numpy as np
import soundfile as sf
from transformers import AutoModelForMaskedLM, BertConfig

from .t2s_lightning_module import \
    Text2SemanticLightningModule
from .cnhubert import CNHubert
from .mel_processing import spectrogram_torch
# from io import BytesIO
from .models import SynthesizerTrn
from .my_utils import load_audio
from .symbols import cleaned_text_to_sequence
from .cleaner import clean_text

from huggingface_hub import hf_hub_download

class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

dict_language = {
    "中文": "all_zh",#全部按中文识别
    "英文": "en",#全部按英文识别#######不变
    "日文": "all_ja",#全部按日文识别
    "中英混合": "zh",#按中英混合识别####不变
    "日英混合": "ja",#按日英混合识别####不变
    "多语种混合": "auto",#多语种启动切分识别语种
    "ZH": "zh",
    "EN": "en",
    "JA": "ja",
    "zh": "zh",
    "en": "en",
    "ja": "ja",
    "all_zh": "all_zh", #手动添加,以防万一
    "all_ja": "all_ja", #手动添加,以防万一
    "auto": "auto" #手动添加,以防万一
}

splits = {
    ",",
    "。",
    "?",
    "!",
    ",",
    ".",
    "?",
    "!",
    "~",
    ":",
    ":",
    "—",
    "…",
}  # 不考虑省略号

def splite_en_inf(sentence, language):
    pattern = re.compile(r'[a-zA-Z ]+')
    textlist = []
    langlist = []
    pos = 0
    for match in pattern.finditer(sentence):
        start, end = match.span()
        if start > pos:
            textlist.append(sentence[pos:start])
            langlist.append(language)
        textlist.append(sentence[start:end])
        langlist.append("en")
        pos = end
    if pos < len(sentence):
        textlist.append(sentence[pos:])
        langlist.append(language)
    # Merge punctuation into previous word
    for i in range(len(textlist)-1, 0, -1):
        if re.match(r'^[\W_]+$', textlist[i]):
            textlist[i-1] += textlist[i]
            del textlist[i]
            del langlist[i]
    # Merge consecutive words with the same language tag
    i = 0
    while i < len(langlist) - 1:
        if langlist[i] == langlist[i+1]:
            textlist[i] += textlist[i+1]
            del textlist[i+1]
            del langlist[i+1]
        else:
            i += 1

    return textlist, langlist

def clean_text_inf(text, language):
    formattext = ""
    language = language.replace("all_","")
    for tmp in LangSegment.getTexts(text):
        if language == "ja":
            if tmp["lang"] == language or tmp["lang"] == "zh":
                formattext += tmp["text"] + " "
            continue
        if tmp["lang"] == language:
            formattext += tmp["text"] + " "
    while "  " in formattext:
        formattext = formattext.replace("  ", " ")
    phones, word2ph, norm_text = clean_text(formattext, language)
    phones = cleaned_text_to_sequence(phones)
    return phones, word2ph, norm_text



def nonen_clean_text_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    phones_list = []
    word2ph_list = []
    norm_text_list = []
    for i in range(len(textlist)):
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
        phones_list.append(phones)
        if lang == "zh":
            word2ph_list.append(word2ph)
        norm_text_list.append(norm_text)
    #【日志】 print(word2ph_list)
    phones = sum(phones_list, [])
    word2ph = sum(word2ph_list, [])
    norm_text = ' '.join(norm_text_list)

    return phones, word2ph, norm_text

def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text

def merge_short_text_in_array(texts, threshold):
    if (len(texts)) < 2:
        return texts
    result = []
    text = ""
    for ele in texts:
        text += ele
        if len(text) >= threshold:
            result.append(text)
            text = ""
    if (len(text) > 0):
        if len(result) == 0:
            result.append(text)
        else:
            result[len(result) - 1] += text
    return result

# ====== 对输入文本进行切割 =========

def split(todo_text):
    """
    将大段文本按标点切割,并将每段文本(保留末尾标点)组成列表。
    """
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    """
    第一种文本分段法:基于重写的split分割后,凑4段语句推理一次。
    """
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
    else:
        opts = [inp]
    return "\n".join(opts)


def cut2(inp):
    """
    第二种文本分段法:基于重写split分割后,凑50个字推理一次。
    """
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return [inp]
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    if len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    return "\n".join(opts)

def cut3(inp):
    """
    第三种文本分段法:仅仅按中文句号分割。
    """
    inp = inp.strip("\n")
    return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])

# 新增两种切法

def cut4(inp):
    """
    "按英文句号.切"
    """
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip(".").split(".")])


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    """
    "按标点符号切"
    """
    # if not re.search(r'[^\w\s]', inp[-1]):
    # inp += '。'
    inp = inp.strip("\n")
    punds = r'[,.;?!、,。?!;:…]'
    items = re.split(f'({punds})', inp)
    mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
    # 在句子不存在符号或句尾无符号的时候保证文本完整
    if len(items)%2 == 1:
        mergeitems.append(items[-1])
    opt = "\n".join(mergeitems)
    return opt

def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
                            hps.data.win_length, center=False)
    return spec

class GPTSoVITSModel(PreTrainedModel):
    config_class = GPTSoVITSConfig

    def __init__(self, config: GPTSoVITSConfig):
        super().__init__(config)
        self.name_or_path = config.name_or_path
        current_dir = os.path.dirname(os.path.abspath(__file__))
        try:
            for file in ["opencpop-strict.txt","cmudict-fast.rep","cmudict.rep","engdict-hot.rep"]:
                hf_hub_download(
                    repo_id=self.name_or_path,
                    filename=file,
                    repo_type="model",
                    local_dir=current_dir
                )
        except:
            print("Download not executed: maybe under dev mode, please put the files in current directory")
            pass

        self.prompt_language = config.prompt_language

        self.ssl_model = CNHubert(config._hubert_config_dict, config._hubert_extractor_config_dict)
        self.bert_model = AutoModelForMaskedLM.from_config(BertConfig.from_dict(config._bert_config_dict))
        self.hps = DictToAttrRecursive(config._hps_dict)
        self.hps.model.semantic_frame_rate = "25hz"
        self.gpt_config = config._gpt_config_dict
        self.vq_model = SynthesizerTrn(
        self.hps.data.filter_length // 2 + 1,
        self.hps.train.segment_size // self.hps.data.hop_length,
        n_speakers=self.hps.data.n_speakers,
        **self.hps.model)
        self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "ojbk", is_train=False)
        try:
            self.ref_wav_path = hf_hub_download(
                repo_id=self.name_or_path,
                filename="ref.wav",
                repo_type="model",
                local_dir = current_dir
            )
            self.prompt_text_path = hf_hub_download(
                repo_id=self.name_or_path,
                filename="ref.txt",
                repo_type="model",
                local_dir = current_dir
            )
        except:
            self.ref_wav_path = os.path.join(current_dir, "ref.wav")
            self.prompt_text_path = os.path.join(current_dir, "ref.txt")
            print("Download not executed: maybe under dev mode, please put the files in current directory")
        self.refer = get_spepc(self.hps, self.ref_wav_path)
        



    def get_cleaned_text_final(self,text,language):
        """
        根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
        -> phones,word2ph,norm_text
            - clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
                - clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
            - nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
                - splite_en_inf
        """
        if language in {"en","all_zh","all_ja"}:
            phones, word2ph, norm_text = clean_text_inf(text, language)
        elif language in {"zh", "ja","auto"}:
            phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
        return phones, word2ph, norm_text
    
    def get_bert_inf(self, phones, word2ph, norm_text, language):
        device = self.device # 【补】
        is_half = self.dtype == torch.float16 # 【补】
        
        language=language.replace("all_","")
        if language == "zh":
            bert = self.get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
        else:
            bert = torch.zeros(
                (1024, len(phones)),
                dtype=torch.float16 if is_half == True else torch.float32,
            ).to(device)

        return bert
    
    def get_bert_feature(self, text, word2ph, tokenizer):

        is_half = self.dtype == torch.float16 # 【补】
        device = self.device # 【补】

        with torch.no_grad():
            inputs = tokenizer(text, return_tensors="pt")
            for i in inputs:
                inputs[i] = inputs[i].to(device)  #####输入是long不用管精度问题,精度随bert_model
            res = self.bert_model(**inputs, output_hidden_states=True)
            res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
        assert len(word2ph) == len(text)
        phone_level_feature = []
        for i in range(len(word2ph)):
            repeat_feature = res[i].repeat(word2ph[i], 1)
            phone_level_feature.append(repeat_feature)
        phone_level_feature = torch.cat(phone_level_feature, dim=0)
        if(is_half==True):phone_level_feature=phone_level_feature.half()
        
        return phone_level_feature.T

    # ======适配混合语种输出======
    # ===
    def get_cleaned_text_final(self,text,language):
        """
        根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
        -> phones,word2ph,norm_text
            - clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
                - clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
            - nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
                - splite_en_inf
        """
        if language in {"en","all_zh","all_ja"}:
            phones, word2ph, norm_text = clean_text_inf(text, language)
        elif language in {"zh", "ja","auto"}:
            phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
        return phones, word2ph, norm_text
    
    def get_bert_inf(self, phones, word2ph, norm_text, language, tokenizer):
        device = self.device # 【补】
        is_half = self.dtype == torch.float16 # 【补】
        
        language=language.replace("all_","")
        if language == "zh":
            bert = self.get_bert_feature(norm_text, word2ph,tokenizer).to(device)#.to(dtype)
        else:
            bert = torch.zeros(
                (1024, len(phones)),
                dtype=torch.float16 if is_half == True else torch.float32,
            ).to(device)

        return bert
    
    def nonen_get_bert_inf(self, text, language, tokenizer):
        if(language!="auto"):
            textlist, langlist = splite_en_inf(text, language)
        else:
            textlist=[]
            langlist=[]
            for tmp in LangSegment.getTexts(text):
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        print(textlist)
        print(langlist)
        bert_list = []
        for i in range(len(textlist)):
            lang = langlist[i]
            phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
            bert = self.get_bert_inf(phones, word2ph, norm_text, lang,tokenizer)
            bert_list.append(bert)
        bert = torch.cat(bert_list, dim=1)

        return bert

    def get_bert_final(self,phones, word2ph, text,language, tokenizer):
        """
        根据语言 选择调用不同的函数来得到一个bert表示。
        需要输入Get_clean_text_final得到的文字素材
        -> bert
            - get_bert_inf 针对纯英文”en”
            - nonen_get_bert_inf 针对混合语种{"zh", "ja","auto"}
            - get_bert_feature 针对纯中文”all_zh”
        """
        device = self.device # 【补】

        if language == "en":
            bert = self.get_bert_inf(phones, word2ph, text, language, tokenizer) # 【补】
        elif language in {"zh", "ja","auto"}:
            bert = self.nonen_get_bert_inf(text, language, tokenizer)
        elif language == "all_zh":
            bert = self.get_bert_feature(text, word2ph, tokenizer).to(device)
        else:
            bert = torch.zeros((1024, len(phones))).to(device)
        return bert

    # ===
    # ======适配混合语种输出======

    def infer(self, text, tokenizer, text_language="zh",
                    how_to_cut="凑四句一切", 
                    top_k=20, top_p=0.6, temperature=0.6, 
                    # 关于上面三个参数 https://github.com/RVC-Boss/GPT-SoVITS/pull/457
                    # 可以通过降低温度,降低top_p,top_k 提升模型输出内容的一致性
                    ref_free = False) -> tuple[np.ndarray,float|int]: # 在不知道参考音频文本的情况下进行推理
        
        # ====== 函数内变量 ======
        # ===
        # 根据声色指定相关模型与参考语音
        ref_wav_path = self.ref_wav_path

        if not ref_free:
            prompt_text_path = self.prompt_text_path
            with open(prompt_text_path, 'r', encoding='utf-8') as file:
                prompt_text = file.read()
            # 如果txt中音频文本为空,则也不使用音频文本。
            if prompt_text is None or len(prompt_text) == 0:
                ref_free = True
        prompt_language = self.prompt_language

        
        device = self.device
        is_half = self.dtype == torch.float16
        dtype = self.dtype

        hz = 50
        max_sec = self.gpt_config['data']['max_sec']
        # ===
        # ====== 函数内变量 ======


        # 确认参考语音和推理文本的语种(可以不必,已对prompt_language和text_language的输入做了严格限制)
        prompt_language = dict_language[prompt_language]
        text_language = dict_language[text_language]

        if not ref_free:
            prompt_text = prompt_text.strip("\n")
            if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
            #【日志】 print("实际输入的参考文本:", prompt_text)
       
        # 预处理推理文本:文本第一段(get_first)若特别短<4字符,则在文本最前方加上句号。
        text = text.strip("\n")
        if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
        
        #【日志】 print("实际输入的目标文本:", text)

        # 创建空音频段
        # 第一个with torch.no_grad() 从参考音频中提取语义信息,并把空音频段放到参考音频末尾->prompt_semantic
        zero_wav = np.zeros(
            int(self.hps.data.sampling_rate * 0.3), # 【补】
            dtype=np.float16 if is_half == True else np.float32,
        )
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)
            if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
                raise OSError("参考音频在3~10秒范围外,请更换!")
            wav16k = torch.from_numpy(wav16k)
            zero_wav_torch = torch.from_numpy(zero_wav)
            if is_half == True:
                wav16k = wav16k.half().to(device)
                zero_wav_torch = zero_wav_torch.half().to(device)
            else:
                wav16k = wav16k.to(device)
                zero_wav_torch = zero_wav_torch.to(device)
            wav16k = torch.cat([wav16k, zero_wav_torch])
            ssl_content = self.ssl_model.model(wav16k.unsqueeze(0))[
                "last_hidden_state"
            ].transpose(
                1, 2
            )  # .float()
            codes = self.vq_model.extract_latent(ssl_content)
    
            prompt_semantic = codes[0, 0]

        # 切分推理文本,5种方法。一般可选4句一切和按标点符号切。之后,将其中小于5的语句/短语合并(merge_short_text_in_array)。最终得到推理文本切割列表
        # -> texts
        if (how_to_cut == "凑四句一切"):
            text = cut1(text)
        elif (how_to_cut == "凑50字一切"):
            text = cut2(text)
        elif (how_to_cut == "按中文句号。切"):
            text = cut3(text)
        elif (how_to_cut == "按英文句号.切"):
            text = cut4(text)
        elif (how_to_cut == "按标点符号切"):
            text = cut5(text)
        while "\n\n" in text:
            text = text.replace("\n\n", "\n")
            
        #【日志】 print("实际输入的目标文本(切句后):", text)
        texts = text.split("\n")
        texts = merge_short_text_in_array(texts, 5)
        audio_opt = []
        if not ref_free:
            # 处理参考文本(get_cleaned_text_final)得到文字素材
            # -> phones1,word2ph1,norm_text1
            phones1, word2ph1, norm_text1=self.get_cleaned_text_final(prompt_text, prompt_language)
            # 处理参考语音(Get_bert_final) 输入文字素材phones1,word2ph1,norm_text1
            # 得到bert表示
            # ->bert1
            bert1=self.get_bert_final(phones1, word2ph1, norm_text1,prompt_language,tokenizer).to(dtype)

        # for循环 处理推理文本,对texts中的每一段语句/短语
        # 处理文本(get_cleaned_text_final)得到文字素材
        # -> phones2,word2ph2,norm_text2
        # 处理参考语音(Get_bert_final) 输入文字素材phones2,word2ph2,norm_text2
        # 得到bert表示
        # ->bert2
        for text in texts:
            # 解决输入目标文本的空行导致报错的问题
            if (len(text.strip()) == 0):
                continue
            if (text[-1] not in splits): text += "。" if text_language != "en" else "."
            # 【日志】print("实际输入的目标文本(每句):", text)
            phones2, word2ph2, norm_text2 = self.get_cleaned_text_final(text, text_language)
            bert2 = self.get_bert_final(phones2, word2ph2, norm_text2, text_language,tokenizer).to(dtype)
            if not ref_free:
                bert = torch.cat([bert1, bert2], 1)
                all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
            else:
                bert = bert2
                all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)

            bert = bert.to(device).unsqueeze(0)
            all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
            prompt = prompt_semantic.unsqueeze(0).to(device)
            
            with torch.no_grad():
                # pred_semantic = t2s_model.model.infer(
                pred_semantic, idx = self.t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_len,
                    None if ref_free else prompt,
                    bert,
                    # prompt_phone_len=ph_offset,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    early_stop_num=hz * max_sec,
                )
            
            # print(pred_semantic.shape,idx)
            pred_semantic = pred_semantic[:, -idx:].unsqueeze(
                0
            )  # .unsqueeze(0)#mq要多unsqueeze一次
            refer = get_spepc(self.hps, ref_wav_path)  # .to(device)  # 【补】
            if is_half == True:
                refer = refer.half().to(device)
            else:
                refer = refer.to(device)
            # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
            audio = (
                self.vq_model.decode( # 【补】
                    pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
                )
                    .detach()
                    .cpu()
                    .numpy()[0, 0]
            )  ###试试重建不带上prompt部分
            max_audio=np.abs(audio).max()#简单防止16bit爆音
            if max_audio>1:audio/=max_audio
            audio_opt.append(audio)
            audio_opt.append(zero_wav)
            
        sampling_rate, audio_data = self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
            np.int16
        )

        # sf.write(wav_save_path, audio_data, sampling_rate, format='wav')
        torch.cuda.empty_cache()
        return audio_data, sampling_rate