File size: 24,467 Bytes
80c9a1c 6bc80e7 80c9a1c 6bc80e7 80c9a1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
from transformers import PreTrainedModel
from .configuration_yags import GPTSoVITSConfig
import os
import re
import LangSegment
import torch
import librosa
import numpy as np
import soundfile as sf
from transformers import AutoModelForMaskedLM, BertConfig
from .t2s_lightning_module import \
Text2SemanticLightningModule
from .cnhubert import CNHubert
from .mel_processing import spectrogram_torch
# from io import BytesIO
from .models import SynthesizerTrn
from .my_utils import load_audio
from .symbols import cleaned_text_to_sequence
from .cleaner import clean_text
from huggingface_hub import hf_hub_download
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
dict_language = {
"中文": "all_zh",#全部按中文识别
"英文": "en",#全部按英文识别#######不变
"日文": "all_ja",#全部按日文识别
"中英混合": "zh",#按中英混合识别####不变
"日英混合": "ja",#按日英混合识别####不变
"多语种混合": "auto",#多语种启动切分识别语种
"ZH": "zh",
"EN": "en",
"JA": "ja",
"zh": "zh",
"en": "en",
"ja": "ja",
"all_zh": "all_zh", #手动添加,以防万一
"all_ja": "all_ja", #手动添加,以防万一
"auto": "auto" #手动添加,以防万一
}
splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
} # 不考虑省略号
def splite_en_inf(sentence, language):
pattern = re.compile(r'[a-zA-Z ]+')
textlist = []
langlist = []
pos = 0
for match in pattern.finditer(sentence):
start, end = match.span()
if start > pos:
textlist.append(sentence[pos:start])
langlist.append(language)
textlist.append(sentence[start:end])
langlist.append("en")
pos = end
if pos < len(sentence):
textlist.append(sentence[pos:])
langlist.append(language)
# Merge punctuation into previous word
for i in range(len(textlist)-1, 0, -1):
if re.match(r'^[\W_]+$', textlist[i]):
textlist[i-1] += textlist[i]
del textlist[i]
del langlist[i]
# Merge consecutive words with the same language tag
i = 0
while i < len(langlist) - 1:
if langlist[i] == langlist[i+1]:
textlist[i] += textlist[i+1]
del textlist[i+1]
del langlist[i+1]
else:
i += 1
return textlist, langlist
def clean_text_inf(text, language):
formattext = ""
language = language.replace("all_","")
for tmp in LangSegment.getTexts(text):
if language == "ja":
if tmp["lang"] == language or tmp["lang"] == "zh":
formattext += tmp["text"] + " "
continue
if tmp["lang"] == language:
formattext += tmp["text"] + " "
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text(formattext, language)
phones = cleaned_text_to_sequence(phones)
return phones, word2ph, norm_text
def nonen_clean_text_inf(text, language):
if(language!="auto"):
textlist, langlist = splite_en_inf(text, language)
else:
textlist=[]
langlist=[]
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
phones_list = []
word2ph_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
phones_list.append(phones)
if lang == "zh":
word2ph_list.append(word2ph)
norm_text_list.append(norm_text)
#【日志】 print(word2ph_list)
phones = sum(phones_list, [])
word2ph = sum(word2ph_list, [])
norm_text = ' '.join(norm_text_list)
return phones, word2ph, norm_text
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if (len(text) > 0):
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
# ====== 对输入文本进行切割 =========
def split(todo_text):
"""
将大段文本按标点切割,并将每段文本(保留末尾标点)组成列表。
"""
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
"""
第一种文本分段法:基于重写的split分割后,凑4段语句推理一次。
"""
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
return "\n".join(opts)
def cut2(inp):
"""
第二种文本分段法:基于重写split分割后,凑50个字推理一次。
"""
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return [inp]
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
return "\n".join(opts)
def cut3(inp):
"""
第三种文本分段法:仅仅按中文句号分割。
"""
inp = inp.strip("\n")
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
# 新增两种切法
def cut4(inp):
"""
"按英文句号.切"
"""
inp = inp.strip("\n")
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
"""
"按标点符号切"
"""
# if not re.search(r'[^\w\s]', inp[-1]):
# inp += '。'
inp = inp.strip("\n")
punds = r'[,.;?!、,。?!;:…]'
items = re.split(f'({punds})', inp)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items)%2 == 1:
mergeitems.append(items[-1])
opt = "\n".join(mergeitems)
return opt
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
hps.data.win_length, center=False)
return spec
class GPTSoVITSModel(PreTrainedModel):
config_class = GPTSoVITSConfig
def __init__(self, config: GPTSoVITSConfig):
super().__init__(config)
self.name_or_path = config.name_or_path
current_dir = os.path.dirname(os.path.abspath(__file__))
try:
for file in ["opencpop-strict.txt","cmudict-fast.rep","cmudict.rep","engdict-hot.rep"]:
hf_hub_download(
repo_id=self.name_or_path,
filename=file,
repo_type="model",
local_dir=current_dir
)
except:
print("Download not executed: maybe under dev mode, please put the files in current directory")
pass
self.prompt_language = config.prompt_language
self.ssl_model = CNHubert(config._hubert_config_dict, config._hubert_extractor_config_dict)
self.bert_model = AutoModelForMaskedLM.from_config(BertConfig.from_dict(config._bert_config_dict))
self.hps = DictToAttrRecursive(config._hps_dict)
self.hps.model.semantic_frame_rate = "25hz"
self.gpt_config = config._gpt_config_dict
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model)
self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "ojbk", is_train=False)
try:
self.ref_wav_path = hf_hub_download(
repo_id=self.name_or_path,
filename="ref.wav",
repo_type="model",
local_dir = current_dir
)
self.prompt_text_path = hf_hub_download(
repo_id=self.name_or_path,
filename="ref.txt",
repo_type="model",
local_dir = current_dir
)
except:
self.ref_wav_path = os.path.join(current_dir, "ref.wav")
self.prompt_text_path = os.path.join(current_dir, "ref.txt")
print("Download not executed: maybe under dev mode, please put the files in current directory")
self.refer = get_spepc(self.hps, self.ref_wav_path)
def get_cleaned_text_final(self,text,language):
"""
根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
-> phones,word2ph,norm_text
- clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
- clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
- nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
- splite_en_inf
"""
if language in {"en","all_zh","all_ja"}:
phones, word2ph, norm_text = clean_text_inf(text, language)
elif language in {"zh", "ja","auto"}:
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
return phones, word2ph, norm_text
def get_bert_inf(self, phones, word2ph, norm_text, language):
device = self.device # 【补】
is_half = self.dtype == torch.float16 # 【补】
language=language.replace("all_","")
if language == "zh":
bert = self.get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
def get_bert_feature(self, text, word2ph, tokenizer):
is_half = self.dtype == torch.float16 # 【补】
device = self.device # 【补】
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
res = self.bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
# ======适配混合语种输出======
# ===
def get_cleaned_text_final(self,text,language):
"""
根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
-> phones,word2ph,norm_text
- clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
- clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
- nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
- splite_en_inf
"""
if language in {"en","all_zh","all_ja"}:
phones, word2ph, norm_text = clean_text_inf(text, language)
elif language in {"zh", "ja","auto"}:
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
return phones, word2ph, norm_text
def get_bert_inf(self, phones, word2ph, norm_text, language, tokenizer):
device = self.device # 【补】
is_half = self.dtype == torch.float16 # 【补】
language=language.replace("all_","")
if language == "zh":
bert = self.get_bert_feature(norm_text, word2ph,tokenizer).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
def nonen_get_bert_inf(self, text, language, tokenizer):
if(language!="auto"):
textlist, langlist = splite_en_inf(text, language)
else:
textlist=[]
langlist=[]
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
print(textlist)
print(langlist)
bert_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
bert = self.get_bert_inf(phones, word2ph, norm_text, lang,tokenizer)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
return bert
def get_bert_final(self,phones, word2ph, text,language, tokenizer):
"""
根据语言 选择调用不同的函数来得到一个bert表示。
需要输入Get_clean_text_final得到的文字素材
-> bert
- get_bert_inf 针对纯英文”en”
- nonen_get_bert_inf 针对混合语种{"zh", "ja","auto"}
- get_bert_feature 针对纯中文”all_zh”
"""
device = self.device # 【补】
if language == "en":
bert = self.get_bert_inf(phones, word2ph, text, language, tokenizer) # 【补】
elif language in {"zh", "ja","auto"}:
bert = self.nonen_get_bert_inf(text, language, tokenizer)
elif language == "all_zh":
bert = self.get_bert_feature(text, word2ph, tokenizer).to(device)
else:
bert = torch.zeros((1024, len(phones))).to(device)
return bert
# ===
# ======适配混合语种输出======
def infer(self, text, tokenizer, text_language="zh",
how_to_cut="凑四句一切",
top_k=20, top_p=0.6, temperature=0.6,
# 关于上面三个参数 https://github.com/RVC-Boss/GPT-SoVITS/pull/457
# 可以通过降低温度,降低top_p,top_k 提升模型输出内容的一致性
ref_free = False) -> tuple[np.ndarray,float|int]: # 在不知道参考音频文本的情况下进行推理
# ====== 函数内变量 ======
# ===
# 根据声色指定相关模型与参考语音
ref_wav_path = self.ref_wav_path
if not ref_free:
prompt_text_path = self.prompt_text_path
with open(prompt_text_path, 'r', encoding='utf-8') as file:
prompt_text = file.read()
# 如果txt中音频文本为空,则也不使用音频文本。
if prompt_text is None or len(prompt_text) == 0:
ref_free = True
prompt_language = self.prompt_language
device = self.device
is_half = self.dtype == torch.float16
dtype = self.dtype
hz = 50
max_sec = self.gpt_config['data']['max_sec']
# ===
# ====== 函数内变量 ======
# 确认参考语音和推理文本的语种(可以不必,已对prompt_language和text_language的输入做了严格限制)
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if not ref_free:
prompt_text = prompt_text.strip("\n")
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
#【日志】 print("实际输入的参考文本:", prompt_text)
# 预处理推理文本:文本第一段(get_first)若特别短<4字符,则在文本最前方加上句号。
text = text.strip("\n")
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
#【日志】 print("实际输入的目标文本:", text)
# 创建空音频段
# 第一个with torch.no_grad() 从参考音频中提取语义信息,并把空音频段放到参考音频末尾->prompt_semantic
zero_wav = np.zeros(
int(self.hps.data.sampling_rate * 0.3), # 【补】
dtype=np.float16 if is_half == True else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
raise OSError("参考音频在3~10秒范围外,请更换!")
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = self.ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = self.vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
# 切分推理文本,5种方法。一般可选4句一切和按标点符号切。之后,将其中小于5的语句/短语合并(merge_short_text_in_array)。最终得到推理文本切割列表
# -> texts
if (how_to_cut == "凑四句一切"):
text = cut1(text)
elif (how_to_cut == "凑50字一切"):
text = cut2(text)
elif (how_to_cut == "按中文句号。切"):
text = cut3(text)
elif (how_to_cut == "按英文句号.切"):
text = cut4(text)
elif (how_to_cut == "按标点符号切"):
text = cut5(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
#【日志】 print("实际输入的目标文本(切句后):", text)
texts = text.split("\n")
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
if not ref_free:
# 处理参考文本(get_cleaned_text_final)得到文字素材
# -> phones1,word2ph1,norm_text1
phones1, word2ph1, norm_text1=self.get_cleaned_text_final(prompt_text, prompt_language)
# 处理参考语音(Get_bert_final) 输入文字素材phones1,word2ph1,norm_text1
# 得到bert表示
# ->bert1
bert1=self.get_bert_final(phones1, word2ph1, norm_text1,prompt_language,tokenizer).to(dtype)
# for循环 处理推理文本,对texts中的每一段语句/短语
# 处理文本(get_cleaned_text_final)得到文字素材
# -> phones2,word2ph2,norm_text2
# 处理参考语音(Get_bert_final) 输入文字素材phones2,word2ph2,norm_text2
# 得到bert表示
# ->bert2
for text in texts:
# 解决输入目标文本的空行导致报错的问题
if (len(text.strip()) == 0):
continue
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
# 【日志】print("实际输入的目标文本(每句):", text)
phones2, word2ph2, norm_text2 = self.get_cleaned_text_final(text, text_language)
bert2 = self.get_bert_final(phones2, word2ph2, norm_text2, text_language,tokenizer).to(dtype)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = self.t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=hz * max_sec,
)
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
0
) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(self.hps, ref_wav_path) # .to(device) # 【补】
if is_half == True:
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = (
self.vq_model.decode( # 【补】
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
)
.detach()
.cpu()
.numpy()[0, 0]
) ###试试重建不带上prompt部分
max_audio=np.abs(audio).max()#简单防止16bit爆音
if max_audio>1:audio/=max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav)
sampling_rate, audio_data = self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
np.int16
)
# sf.write(wav_save_path, audio_data, sampling_rate, format='wav')
torch.cuda.empty_cache()
return audio_data, sampling_rate |