---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:57566
- loss:MultipleNegativesRankingLoss
base_model: allenai/specter2_base
widget:
- source_sentence: Cannabis evolution
sentences:
- 'The cannabis conundrum. '
- 'Dawn and decline of the holy smoke. '
- '[Computer-assisted system for interstitial hyperthermia]. '
- source_sentence: Lateral Ventricle AT/RT
sentences:
- 'Improved Assessment of Pathological Regurgitation in Patients with Prosthetic
Heart Valves by Multiplane Transesophageal Echocardiography. '
- '[Surgical anatomy of the lateral ventricles]. '
- 'Lateral Ventricle Atypical Teratoid/Rhabdoid Tumor (AT/RT): Case Report and Review
of Literature. '
- source_sentence: Parkinsonian motor fluctuations
sentences:
- 'Basic mechanisms of motor fluctuations. '
- 'Nonmotor Fluctuations in Parkinson''s Disease. '
- 'Sodium conductance in calcium channels of single smooth muscle cells of guinea-pig
taenia caeci. '
- source_sentence: Phagocytic Assay
sentences:
- 'Assay for phagocytosis. '
- 'Opsonophagocytic assay. '
- 'Clinical evaluation of synthetic aperture sequential beamforming ultrasound in
patients with liver tumors. '
- source_sentence: Content validity assessment
sentences:
- 'Content validity is naught. '
- 'Male requires a higher median target effect-site concentration of propofol for
I-gel placement when combined with dexmedetomidine. '
- 'Establishing content-validity of a disease-specific health-related quality of
life instrument for patients with chronic hypersensitivity pneumonitis. '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on allenai/specter2_base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.04
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.22
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.04
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.06666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.044000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.18
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.27
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.15735897323110787
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13194444444444445
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.13092350353731416
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.52
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.084
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.052000000000000005
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.52
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.35375176104312445
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.30138095238095236
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.31610409814616347
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.12000000000000001
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.41000000000000003
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12000000000000001
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.064
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.041
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.115
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.27
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.31
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.395
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25555536713711613
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21666269841269842
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22351380084173883
name: Cosine Map@100
---
# SentenceTransformer based on allenai/specter2_base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Content validity assessment',
'Establishing content-validity of a disease-specific health-related quality of life instrument for patients with chronic hypersensitivity pneumonitis. ',
'Content validity is naught. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoNQ` and `NanoMSMARCO`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoNQ | NanoMSMARCO |
|:--------------------|:-----------|:------------|
| cosine_accuracy@1 | 0.04 | 0.2 |
| cosine_accuracy@3 | 0.2 | 0.36 |
| cosine_accuracy@5 | 0.22 | 0.42 |
| cosine_accuracy@10 | 0.3 | 0.52 |
| cosine_precision@1 | 0.04 | 0.2 |
| cosine_precision@3 | 0.0667 | 0.12 |
| cosine_precision@5 | 0.044 | 0.084 |
| cosine_precision@10 | 0.03 | 0.052 |
| cosine_recall@1 | 0.03 | 0.2 |
| cosine_recall@3 | 0.18 | 0.36 |
| cosine_recall@5 | 0.2 | 0.42 |
| cosine_recall@10 | 0.27 | 0.52 |
| **cosine_ndcg@10** | **0.1574** | **0.3538** |
| cosine_mrr@10 | 0.1319 | 0.3014 |
| cosine_map@100 | 0.1309 | 0.3161 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [NanoBEIREvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.12 |
| cosine_accuracy@3 | 0.28 |
| cosine_accuracy@5 | 0.32 |
| cosine_accuracy@10 | 0.41 |
| cosine_precision@1 | 0.12 |
| cosine_precision@3 | 0.0933 |
| cosine_precision@5 | 0.064 |
| cosine_precision@10 | 0.041 |
| cosine_recall@1 | 0.115 |
| cosine_recall@3 | 0.27 |
| cosine_recall@5 | 0.31 |
| cosine_recall@10 | 0.395 |
| **cosine_ndcg@10** | **0.2556** |
| cosine_mrr@10 | 0.2167 |
| cosine_map@100 | 0.2235 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 57,566 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
neutron camera autofocus
| The autofocusing system of the IMAT neutron camera.
| Robust autofocusing in microscopy.
|
| Melanophore-stimulating hormone-melatonin antagonism
| Melanophore-stimulating hormone-melatonin antagonism in relation to colour change in Xenopus laevis.
| Melanin-concentrating hormone, melanocortin receptors and regulation of luteinizing hormone release.
|
| Healthcare Reform Criticism
| Experts critique doctors' ideas for reforming health care.
| Healthcare reform?
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `gradient_accumulation_steps`: 8
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters