--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:57566 - loss:MultipleNegativesRankingLoss base_model: allenai/specter2_base widget: - source_sentence: Cannabis evolution sentences: - 'The cannabis conundrum. ' - 'Dawn and decline of the holy smoke. ' - '[Computer-assisted system for interstitial hyperthermia]. ' - source_sentence: Lateral Ventricle AT/RT sentences: - 'Improved Assessment of Pathological Regurgitation in Patients with Prosthetic Heart Valves by Multiplane Transesophageal Echocardiography. ' - '[Surgical anatomy of the lateral ventricles]. ' - 'Lateral Ventricle Atypical Teratoid/Rhabdoid Tumor (AT/RT): Case Report and Review of Literature. ' - source_sentence: Parkinsonian motor fluctuations sentences: - 'Basic mechanisms of motor fluctuations. ' - 'Nonmotor Fluctuations in Parkinson''s Disease. ' - 'Sodium conductance in calcium channels of single smooth muscle cells of guinea-pig taenia caeci. ' - source_sentence: Phagocytic Assay sentences: - 'Assay for phagocytosis. ' - 'Opsonophagocytic assay. ' - 'Clinical evaluation of synthetic aperture sequential beamforming ultrasound in patients with liver tumors. ' - source_sentence: Content validity assessment sentences: - 'Content validity is naught. ' - 'Male requires a higher median target effect-site concentration of propofol for I-gel placement when combined with dexmedetomidine. ' - 'Establishing content-validity of a disease-specific health-related quality of life instrument for patients with chronic hypersensitivity pneumonitis. ' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on allenai/specter2_base results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.04 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.22 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.04 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06666666666666667 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.044000000000000004 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.03 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.18 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.27 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15735897323110787 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.13194444444444445 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.13092350353731416 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.2 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.36 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.42 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.52 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.12 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.084 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.052000000000000005 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.36 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.42 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.52 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.35375176104312445 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.30138095238095236 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.31610409814616347 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.12000000000000001 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.28 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.41000000000000003 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12000000000000001 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09333333333333332 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.064 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.041 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.115 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.27 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.31 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.395 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.25555536713711613 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.21666269841269842 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.22351380084173883 name: Cosine Map@100 --- # SentenceTransformer based on allenai/specter2_base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Content validity assessment', 'Establishing content-validity of a disease-specific health-related quality of life instrument for patients with chronic hypersensitivity pneumonitis. ', 'Content validity is naught. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoNQ` and `NanoMSMARCO` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoNQ | NanoMSMARCO | |:--------------------|:-----------|:------------| | cosine_accuracy@1 | 0.04 | 0.2 | | cosine_accuracy@3 | 0.2 | 0.36 | | cosine_accuracy@5 | 0.22 | 0.42 | | cosine_accuracy@10 | 0.3 | 0.52 | | cosine_precision@1 | 0.04 | 0.2 | | cosine_precision@3 | 0.0667 | 0.12 | | cosine_precision@5 | 0.044 | 0.084 | | cosine_precision@10 | 0.03 | 0.052 | | cosine_recall@1 | 0.03 | 0.2 | | cosine_recall@3 | 0.18 | 0.36 | | cosine_recall@5 | 0.2 | 0.42 | | cosine_recall@10 | 0.27 | 0.52 | | **cosine_ndcg@10** | **0.1574** | **0.3538** | | cosine_mrr@10 | 0.1319 | 0.3014 | | cosine_map@100 | 0.1309 | 0.3161 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [NanoBEIREvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.12 | | cosine_accuracy@3 | 0.28 | | cosine_accuracy@5 | 0.32 | | cosine_accuracy@10 | 0.41 | | cosine_precision@1 | 0.12 | | cosine_precision@3 | 0.0933 | | cosine_precision@5 | 0.064 | | cosine_precision@10 | 0.041 | | cosine_recall@1 | 0.115 | | cosine_recall@3 | 0.27 | | cosine_recall@5 | 0.31 | | cosine_recall@10 | 0.395 | | **cosine_ndcg@10** | **0.2556** | | cosine_mrr@10 | 0.2167 | | cosine_map@100 | 0.2235 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 57,566 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------| | neutron camera autofocus | The autofocusing system of the IMAT neutron camera. | Robust autofocusing in microscopy. | | Melanophore-stimulating hormone-melatonin antagonism | Melanophore-stimulating hormone-melatonin antagonism in relation to colour change in Xenopus laevis. | Melanin-concentrating hormone, melanocortin receptors and regulation of luteinizing hormone release. | | Healthcare Reform Criticism | Experts critique doctors' ideas for reforming health care. | Healthcare reform? | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `gradient_accumulation_steps`: 8 - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------------:|:--------------------------:|:----------------------------:| | 0 | 0 | - | 0.0633 | 0.2640 | 0.1636 | | 0.0089 | 1 | 22.3889 | - | - | - | | 0.0178 | 2 | 22.1875 | - | - | - | | 0.0267 | 3 | 21.4657 | - | - | - | | 0.0356 | 4 | 21.7306 | - | - | - | | 0.0444 | 5 | 21.3965 | - | - | - | | 0.0533 | 6 | 21.5539 | - | - | - | | 0.0622 | 7 | 21.5853 | - | - | - | | 0.0711 | 8 | 21.6282 | - | - | - | | 0.08 | 9 | 21.2169 | - | - | - | | 0.0889 | 10 | 21.1228 | - | - | - | | 0.0978 | 11 | 20.7026 | - | - | - | | 0.1067 | 12 | 21.2562 | - | - | - | | 0.1156 | 13 | 21.1227 | - | - | - | | 0.1244 | 14 | 20.6465 | - | - | - | | 0.1333 | 15 | 20.5888 | - | - | - | | 0.1422 | 16 | 20.2334 | - | - | - | | 0.1511 | 17 | 20.6545 | - | - | - | | 0.16 | 18 | 20.2517 | - | - | - | | 0.1689 | 19 | 19.6825 | - | - | - | | 0.1778 | 20 | 19.9251 | - | - | - | | 0.1867 | 21 | 19.6937 | - | - | - | | 0.1956 | 22 | 19.2779 | - | - | - | | 0.2044 | 23 | 19.2927 | - | - | - | | 0.2133 | 24 | 19.2895 | - | - | - | | 0.2222 | 25 | 18.9854 | 0.1085 | 0.2978 | 0.2032 | | 0.2311 | 26 | 18.5096 | - | - | - | | 0.24 | 27 | 18.3789 | - | - | - | | 0.2489 | 28 | 18.2159 | - | - | - | | 0.2578 | 29 | 17.8306 | - | - | - | | 0.2667 | 30 | 17.5964 | - | - | - | | 0.2756 | 31 | 17.2527 | - | - | - | | 0.2844 | 32 | 17.2274 | - | - | - | | 0.2933 | 33 | 17.557 | - | - | - | | 0.3022 | 34 | 17.4682 | - | - | - | | 0.3111 | 35 | 16.9115 | - | - | - | | 0.32 | 36 | 16.9938 | - | - | - | | 0.3289 | 37 | 16.1648 | - | - | - | | 0.3378 | 38 | 16.2908 | - | - | - | | 0.3467 | 39 | 16.7883 | - | - | - | | 0.3556 | 40 | 16.5278 | - | - | - | | 0.3644 | 41 | 15.4466 | - | - | - | | 0.3733 | 42 | 15.3954 | - | - | - | | 0.3822 | 43 | 16.1363 | - | - | - | | 0.3911 | 44 | 14.8857 | - | - | - | | 0.4 | 45 | 15.5596 | - | - | - | | 0.4089 | 46 | 15.6978 | - | - | - | | 0.4178 | 47 | 14.6959 | - | - | - | | 0.4267 | 48 | 15.0677 | - | - | - | | 0.4356 | 49 | 14.4375 | - | - | - | | 0.4444 | 50 | 15.0901 | 0.1348 | 0.3290 | 0.2319 | | 0.4533 | 51 | 13.813 | - | - | - | | 0.4622 | 52 | 14.3135 | - | - | - | | 0.4711 | 53 | 14.9517 | - | - | - | | 0.48 | 54 | 14.0599 | - | - | - | | 0.4889 | 55 | 13.8699 | - | - | - | | 0.4978 | 56 | 14.6277 | - | - | - | | 0.5067 | 57 | 13.3742 | - | - | - | | 0.5156 | 58 | 13.7985 | - | - | - | | 0.5244 | 59 | 13.2972 | - | - | - | | 0.5333 | 60 | 12.9836 | - | - | - | | 0.5422 | 61 | 13.2035 | - | - | - | | 0.5511 | 62 | 13.399 | - | - | - | | 0.56 | 63 | 12.8694 | - | - | - | | 0.5689 | 64 | 12.9775 | - | - | - | | 0.5778 | 65 | 13.5685 | - | - | - | | 0.5867 | 66 | 12.5359 | - | - | - | | 0.5956 | 67 | 12.7989 | - | - | - | | 0.6044 | 68 | 12.2337 | - | - | - | | 0.6133 | 69 | 12.9103 | - | - | - | | 0.6222 | 70 | 12.6319 | - | - | - | | 0.6311 | 71 | 12.3662 | - | - | - | | 0.64 | 72 | 12.4788 | - | - | - | | 0.6489 | 73 | 12.7665 | - | - | - | | 0.6578 | 74 | 12.7189 | - | - | - | | 0.6667 | 75 | 11.6918 | 0.1558 | 0.3619 | 0.2588 | | 0.6756 | 76 | 12.0761 | - | - | - | | 0.6844 | 77 | 12.0588 | - | - | - | | 0.6933 | 78 | 12.1507 | - | - | - | | 0.7022 | 79 | 11.7982 | - | - | - | | 0.7111 | 80 | 12.6278 | - | - | - | | 0.72 | 81 | 12.1629 | - | - | - | | 0.7289 | 82 | 11.9421 | - | - | - | | 0.7378 | 83 | 12.1184 | - | - | - | | 0.7467 | 84 | 11.9142 | - | - | - | | 0.7556 | 85 | 12.1162 | - | - | - | | 0.7644 | 86 | 12.2741 | - | - | - | | 0.7733 | 87 | 11.8835 | - | - | - | | 0.7822 | 88 | 11.8583 | - | - | - | | 0.7911 | 89 | 11.74 | - | - | - | | 0.8 | 90 | 12.0793 | - | - | - | | 0.8089 | 91 | 11.6838 | - | - | - | | 0.8178 | 92 | 11.6922 | - | - | - | | 0.8267 | 93 | 11.9418 | - | - | - | | 0.8356 | 94 | 12.2899 | - | - | - | | 0.8444 | 95 | 12.0957 | - | - | - | | 0.8533 | 96 | 12.0643 | - | - | - | | 0.8622 | 97 | 12.3496 | - | - | - | | 0.8711 | 98 | 12.3521 | - | - | - | | 0.88 | 99 | 11.7082 | - | - | - | | 0.8889 | 100 | 11.6085 | 0.1574 | 0.3538 | 0.2556 | | 0.8978 | 101 | 11.7018 | - | - | - | | 0.9067 | 102 | 11.8227 | - | - | - | | 0.9156 | 103 | 12.5774 | - | - | - | | 0.9244 | 104 | 11.465 | - | - | - | | 0.9333 | 105 | 11.303 | - | - | - | | 0.9422 | 106 | 11.8521 | - | - | - | | 0.9511 | 107 | 11.6083 | - | - | - | | 0.96 | 108 | 12.3972 | - | - | - | | 0.9689 | 109 | 11.6962 | - | - | - | | 0.9778 | 110 | 11.1335 | - | - | - | | 0.9867 | 111 | 12.1325 | - | - | - | | 0.9956 | 112 | 11.7444 | - | - | - |
### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.3.1 - Transformers: 4.49.0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 2.19.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```