Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +443 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:56322
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: allenai/specter2_base
|
10 |
+
widget:
|
11 |
+
- source_sentence: Telehealth Uptake
|
12 |
+
sentences:
|
13 |
+
- 'Telepsychiatry and face-to-face psychiatric consultations during the first year
|
14 |
+
of the COVID-19 pandemic in Australia: patients being heard and seen. '
|
15 |
+
- 'The Determinants of Telehealth Provision: Empirical Evidence from OECD Countries. '
|
16 |
+
- 'Transvenous cardioverter-defibrillator placement via a persistent left superior
|
17 |
+
vena cava. '
|
18 |
+
- source_sentence: Neonatal Mortality Rate in Nairobi
|
19 |
+
sentences:
|
20 |
+
- 'Metabolic responses to BRL37344 and clenbuterol in soleus muscle and C2C12 cells
|
21 |
+
via different atypical pharmacologies and beta2-adrenoceptor mechanisms. '
|
22 |
+
- 'A prospective study of neonatal deaths in Nairobi, Kenya. '
|
23 |
+
- 'Nairobi study. '
|
24 |
+
- source_sentence: Angiotensin II receptor blockade in IgA nephropathy
|
25 |
+
sentences:
|
26 |
+
- 'Use of the index of ideality of correlation to improve aquatic solubility model. '
|
27 |
+
- 'The role of angiotensin II receptor blockers in preventing the progression of
|
28 |
+
renal disease in patients with type 2 diabetes. '
|
29 |
+
- 'The effect of angiotensin type 1 receptor blockade on adhesion molecules in patients
|
30 |
+
with IgA nephropathy. '
|
31 |
+
- source_sentence: Immunopotentiator therapy outcomes in cancer patients
|
32 |
+
sentences:
|
33 |
+
- '[Immunotherapy of terminal-stage malignant tumors with the immunopotentiator
|
34 |
+
OK-432--a comparison between SU-PS test-responder and -nonresponder patients]. '
|
35 |
+
- 'Investigation of modified platelet-rich plasma (mPRP) in promoting the proliferation
|
36 |
+
and differentiation of dental pulp stem cells from deciduous teeth. '
|
37 |
+
- 'Trends and challenges in immuno-oncology trials. '
|
38 |
+
- source_sentence: Community-based management of neonatal sepsis
|
39 |
+
sentences:
|
40 |
+
- 'Lessons from implementation research on community management of Possible Serious
|
41 |
+
Bacterial Infection (PSBI) in young infants (0-59 days), when the referral is
|
42 |
+
not feasible in Palwal district of Haryana, India. '
|
43 |
+
- 'Community management of severe pneumonia in children. '
|
44 |
+
- 'Homo sapiens in the Americas. Overview of the earliest human expansion in the
|
45 |
+
New World. '
|
46 |
+
pipeline_tag: sentence-similarity
|
47 |
+
library_name: sentence-transformers
|
48 |
+
---
|
49 |
+
|
50 |
+
# SentenceTransformer based on allenai/specter2_base
|
51 |
+
|
52 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
53 |
+
|
54 |
+
## Model Details
|
55 |
+
|
56 |
+
### Model Description
|
57 |
+
- **Model Type:** Sentence Transformer
|
58 |
+
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
|
59 |
+
- **Maximum Sequence Length:** 512 tokens
|
60 |
+
- **Output Dimensionality:** 768 dimensions
|
61 |
+
- **Similarity Function:** Cosine Similarity
|
62 |
+
- **Training Dataset:**
|
63 |
+
- json
|
64 |
+
<!-- - **Language:** Unknown -->
|
65 |
+
<!-- - **License:** Unknown -->
|
66 |
+
|
67 |
+
### Model Sources
|
68 |
+
|
69 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
70 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
71 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
72 |
+
|
73 |
+
### Full Model Architecture
|
74 |
+
|
75 |
+
```
|
76 |
+
SentenceTransformer(
|
77 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
|
78 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
79 |
+
)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Usage
|
83 |
+
|
84 |
+
### Direct Usage (Sentence Transformers)
|
85 |
+
|
86 |
+
First install the Sentence Transformers library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install -U sentence-transformers
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
```python
|
94 |
+
from sentence_transformers import SentenceTransformer
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
98 |
+
# Run inference
|
99 |
+
sentences = [
|
100 |
+
'Community-based management of neonatal sepsis',
|
101 |
+
'Lessons from implementation research on community management of Possible Serious Bacterial Infection (PSBI) in young infants (0-59 days), when the referral is not feasible in Palwal district of Haryana, India. ',
|
102 |
+
'Community management of severe pneumonia in children. ',
|
103 |
+
]
|
104 |
+
embeddings = model.encode(sentences)
|
105 |
+
print(embeddings.shape)
|
106 |
+
# [3, 768]
|
107 |
+
|
108 |
+
# Get the similarity scores for the embeddings
|
109 |
+
similarities = model.similarity(embeddings, embeddings)
|
110 |
+
print(similarities.shape)
|
111 |
+
# [3, 3]
|
112 |
+
```
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Direct Usage (Transformers)
|
116 |
+
|
117 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Downstream Usage (Sentence Transformers)
|
124 |
+
|
125 |
+
You can finetune this model on your own dataset.
|
126 |
+
|
127 |
+
<details><summary>Click to expand</summary>
|
128 |
+
|
129 |
+
</details>
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Out-of-Scope Use
|
134 |
+
|
135 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
## Bias, Risks and Limitations
|
140 |
+
|
141 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Recommendations
|
146 |
+
|
147 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
## Training Details
|
151 |
+
|
152 |
+
### Training Dataset
|
153 |
+
|
154 |
+
#### json
|
155 |
+
|
156 |
+
* Dataset: json
|
157 |
+
* Size: 56,322 training samples
|
158 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
159 |
+
* Approximate statistics based on the first 1000 samples:
|
160 |
+
| | anchor | positive | negative |
|
161 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
162 |
+
| type | string | string | string |
|
163 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 7.57 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.41 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.46 tokens</li><li>max: 47 tokens</li></ul> |
|
164 |
+
* Samples:
|
165 |
+
| anchor | positive | negative |
|
166 |
+
|:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
|
167 |
+
| <code>Karyomorphology</code> | <code>Karyomorphology of Taiwanese Begonia (Begoniaceae): taxonomic implications. </code> | <code>Spectral karyotyping. </code> |
|
168 |
+
| <code>Topical anesthetic efficacy predictors</code> | <code>Determinants of success and failure of EMLA. </code> | <code>Topical anesthetics update: EMLA and beyond. </code> |
|
169 |
+
| <code>Laser-induced bacteremia</code> | <code>[Bacteremia following endoscopic laser therapy. Incidence of bacteremia and infection following laser coagulation of stenosing processes of the gastrointestinal tract]. </code> | <code>Bacterial infections following non-ablative fractional laser treatment: a case series and discussion. </code> |
|
170 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
171 |
+
```json
|
172 |
+
{
|
173 |
+
"scale": 20.0,
|
174 |
+
"similarity_fct": "cos_sim"
|
175 |
+
}
|
176 |
+
```
|
177 |
+
|
178 |
+
### Training Hyperparameters
|
179 |
+
#### Non-Default Hyperparameters
|
180 |
+
|
181 |
+
- `per_device_train_batch_size`: 16
|
182 |
+
- `gradient_accumulation_steps`: 48
|
183 |
+
- `learning_rate`: 0.0003
|
184 |
+
- `num_train_epochs`: 1
|
185 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
186 |
+
- `warmup_ratio`: 0.1
|
187 |
+
- `bf16`: True
|
188 |
+
- `batch_sampler`: no_duplicates
|
189 |
+
|
190 |
+
#### All Hyperparameters
|
191 |
+
<details><summary>Click to expand</summary>
|
192 |
+
|
193 |
+
- `overwrite_output_dir`: False
|
194 |
+
- `do_predict`: False
|
195 |
+
- `eval_strategy`: no
|
196 |
+
- `prediction_loss_only`: True
|
197 |
+
- `per_device_train_batch_size`: 16
|
198 |
+
- `per_device_eval_batch_size`: 8
|
199 |
+
- `per_gpu_train_batch_size`: None
|
200 |
+
- `per_gpu_eval_batch_size`: None
|
201 |
+
- `gradient_accumulation_steps`: 48
|
202 |
+
- `eval_accumulation_steps`: None
|
203 |
+
- `torch_empty_cache_steps`: None
|
204 |
+
- `learning_rate`: 0.0003
|
205 |
+
- `weight_decay`: 0.0
|
206 |
+
- `adam_beta1`: 0.9
|
207 |
+
- `adam_beta2`: 0.999
|
208 |
+
- `adam_epsilon`: 1e-08
|
209 |
+
- `max_grad_norm`: 1.0
|
210 |
+
- `num_train_epochs`: 1
|
211 |
+
- `max_steps`: -1
|
212 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
213 |
+
- `lr_scheduler_kwargs`: {}
|
214 |
+
- `warmup_ratio`: 0.1
|
215 |
+
- `warmup_steps`: 0
|
216 |
+
- `log_level`: passive
|
217 |
+
- `log_level_replica`: warning
|
218 |
+
- `log_on_each_node`: True
|
219 |
+
- `logging_nan_inf_filter`: True
|
220 |
+
- `save_safetensors`: True
|
221 |
+
- `save_on_each_node`: False
|
222 |
+
- `save_only_model`: False
|
223 |
+
- `restore_callback_states_from_checkpoint`: False
|
224 |
+
- `no_cuda`: False
|
225 |
+
- `use_cpu`: False
|
226 |
+
- `use_mps_device`: False
|
227 |
+
- `seed`: 42
|
228 |
+
- `data_seed`: None
|
229 |
+
- `jit_mode_eval`: False
|
230 |
+
- `use_ipex`: False
|
231 |
+
- `bf16`: True
|
232 |
+
- `fp16`: False
|
233 |
+
- `fp16_opt_level`: O1
|
234 |
+
- `half_precision_backend`: auto
|
235 |
+
- `bf16_full_eval`: False
|
236 |
+
- `fp16_full_eval`: False
|
237 |
+
- `tf32`: None
|
238 |
+
- `local_rank`: 0
|
239 |
+
- `ddp_backend`: None
|
240 |
+
- `tpu_num_cores`: None
|
241 |
+
- `tpu_metrics_debug`: False
|
242 |
+
- `debug`: []
|
243 |
+
- `dataloader_drop_last`: False
|
244 |
+
- `dataloader_num_workers`: 0
|
245 |
+
- `dataloader_prefetch_factor`: None
|
246 |
+
- `past_index`: -1
|
247 |
+
- `disable_tqdm`: False
|
248 |
+
- `remove_unused_columns`: True
|
249 |
+
- `label_names`: None
|
250 |
+
- `load_best_model_at_end`: False
|
251 |
+
- `ignore_data_skip`: False
|
252 |
+
- `fsdp`: []
|
253 |
+
- `fsdp_min_num_params`: 0
|
254 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
255 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
256 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
257 |
+
- `deepspeed`: None
|
258 |
+
- `label_smoothing_factor`: 0.0
|
259 |
+
- `optim`: adamw_torch
|
260 |
+
- `optim_args`: None
|
261 |
+
- `adafactor`: False
|
262 |
+
- `group_by_length`: False
|
263 |
+
- `length_column_name`: length
|
264 |
+
- `ddp_find_unused_parameters`: None
|
265 |
+
- `ddp_bucket_cap_mb`: None
|
266 |
+
- `ddp_broadcast_buffers`: False
|
267 |
+
- `dataloader_pin_memory`: True
|
268 |
+
- `dataloader_persistent_workers`: False
|
269 |
+
- `skip_memory_metrics`: True
|
270 |
+
- `use_legacy_prediction_loop`: False
|
271 |
+
- `push_to_hub`: False
|
272 |
+
- `resume_from_checkpoint`: None
|
273 |
+
- `hub_model_id`: None
|
274 |
+
- `hub_strategy`: every_save
|
275 |
+
- `hub_private_repo`: None
|
276 |
+
- `hub_always_push`: False
|
277 |
+
- `gradient_checkpointing`: False
|
278 |
+
- `gradient_checkpointing_kwargs`: None
|
279 |
+
- `include_inputs_for_metrics`: False
|
280 |
+
- `include_for_metrics`: []
|
281 |
+
- `eval_do_concat_batches`: True
|
282 |
+
- `fp16_backend`: auto
|
283 |
+
- `push_to_hub_model_id`: None
|
284 |
+
- `push_to_hub_organization`: None
|
285 |
+
- `mp_parameters`:
|
286 |
+
- `auto_find_batch_size`: False
|
287 |
+
- `full_determinism`: False
|
288 |
+
- `torchdynamo`: None
|
289 |
+
- `ray_scope`: last
|
290 |
+
- `ddp_timeout`: 1800
|
291 |
+
- `torch_compile`: False
|
292 |
+
- `torch_compile_backend`: None
|
293 |
+
- `torch_compile_mode`: None
|
294 |
+
- `dispatch_batches`: None
|
295 |
+
- `split_batches`: None
|
296 |
+
- `include_tokens_per_second`: False
|
297 |
+
- `include_num_input_tokens_seen`: False
|
298 |
+
- `neftune_noise_alpha`: None
|
299 |
+
- `optim_target_modules`: None
|
300 |
+
- `batch_eval_metrics`: False
|
301 |
+
- `eval_on_start`: False
|
302 |
+
- `use_liger_kernel`: False
|
303 |
+
- `eval_use_gather_object`: False
|
304 |
+
- `average_tokens_across_devices`: False
|
305 |
+
- `prompts`: None
|
306 |
+
- `batch_sampler`: no_duplicates
|
307 |
+
- `multi_dataset_batch_sampler`: proportional
|
308 |
+
|
309 |
+
</details>
|
310 |
+
|
311 |
+
### Training Logs
|
312 |
+
| Epoch | Step | Training Loss |
|
313 |
+
|:------:|:----:|:-------------:|
|
314 |
+
| 0.0136 | 1 | 83.9795 |
|
315 |
+
| 0.0273 | 2 | 83.385 |
|
316 |
+
| 0.0409 | 3 | 81.5195 |
|
317 |
+
| 0.0545 | 4 | 82.4763 |
|
318 |
+
| 0.0682 | 5 | 77.9581 |
|
319 |
+
| 0.0818 | 6 | 75.8043 |
|
320 |
+
| 0.0954 | 7 | 74.3289 |
|
321 |
+
| 0.1091 | 8 | 67.4518 |
|
322 |
+
| 0.1227 | 9 | 63.8553 |
|
323 |
+
| 0.1363 | 10 | 59.4602 |
|
324 |
+
| 0.1500 | 11 | 54.0893 |
|
325 |
+
| 0.1636 | 12 | 51.1418 |
|
326 |
+
| 0.1772 | 13 | 50.7358 |
|
327 |
+
| 0.1909 | 14 | 50.7782 |
|
328 |
+
| 0.2045 | 15 | 47.9497 |
|
329 |
+
| 0.2181 | 16 | 51.9096 |
|
330 |
+
| 0.2318 | 17 | 46.8841 |
|
331 |
+
| 0.2454 | 18 | 49.1223 |
|
332 |
+
| 0.2590 | 19 | 49.3476 |
|
333 |
+
| 0.2726 | 20 | 46.8873 |
|
334 |
+
| 0.2863 | 21 | 45.627 |
|
335 |
+
| 0.2999 | 22 | 45.4817 |
|
336 |
+
| 0.3135 | 23 | 41.4739 |
|
337 |
+
| 0.3272 | 24 | 41.5653 |
|
338 |
+
| 0.3408 | 25 | 43.989 |
|
339 |
+
| 0.3544 | 26 | 42.719 |
|
340 |
+
| 0.3681 | 27 | 39.3142 |
|
341 |
+
| 0.3817 | 28 | 37.5277 |
|
342 |
+
| 0.3953 | 29 | 41.4385 |
|
343 |
+
| 0.4090 | 30 | 36.9825 |
|
344 |
+
| 0.4226 | 31 | 33.9214 |
|
345 |
+
| 0.4362 | 32 | 37.8196 |
|
346 |
+
| 0.4499 | 33 | 30.578 |
|
347 |
+
| 0.4635 | 34 | 33.6526 |
|
348 |
+
| 0.4771 | 35 | 31.7205 |
|
349 |
+
| 0.4908 | 36 | 33.5226 |
|
350 |
+
| 0.5044 | 37 | 33.491 |
|
351 |
+
| 0.5180 | 38 | 30.3925 |
|
352 |
+
| 0.5317 | 39 | 32.6365 |
|
353 |
+
| 0.5453 | 40 | 29.2933 |
|
354 |
+
| 0.5589 | 41 | 31.0618 |
|
355 |
+
| 0.5726 | 42 | 32.1394 |
|
356 |
+
| 0.5862 | 43 | 33.1907 |
|
357 |
+
| 0.5998 | 44 | 30.6758 |
|
358 |
+
| 0.6135 | 45 | 29.0445 |
|
359 |
+
| 0.6271 | 46 | 30.2431 |
|
360 |
+
| 0.6407 | 47 | 29.6209 |
|
361 |
+
| 0.6544 | 48 | 28.1471 |
|
362 |
+
| 0.6680 | 49 | 28.9184 |
|
363 |
+
| 0.6816 | 50 | 27.3557 |
|
364 |
+
| 0.6953 | 51 | 29.4244 |
|
365 |
+
| 0.7089 | 52 | 28.983 |
|
366 |
+
| 0.7225 | 53 | 27.1205 |
|
367 |
+
| 0.7362 | 54 | 28.0307 |
|
368 |
+
| 0.7498 | 55 | 31.0242 |
|
369 |
+
| 0.7634 | 56 | 26.7353 |
|
370 |
+
| 0.7771 | 57 | 28.5273 |
|
371 |
+
| 0.7907 | 58 | 27.497 |
|
372 |
+
| 0.8043 | 59 | 27.6916 |
|
373 |
+
| 0.8179 | 60 | 26.049 |
|
374 |
+
| 0.8316 | 61 | 27.925 |
|
375 |
+
| 0.8452 | 62 | 26.8952 |
|
376 |
+
| 0.8588 | 63 | 28.7678 |
|
377 |
+
| 0.8725 | 64 | 28.4479 |
|
378 |
+
| 0.8861 | 65 | 26.7105 |
|
379 |
+
| 0.8997 | 66 | 26.0126 |
|
380 |
+
| 0.9134 | 67 | 27.6992 |
|
381 |
+
| 0.9270 | 68 | 27.0397 |
|
382 |
+
| 0.9406 | 69 | 26.4259 |
|
383 |
+
| 0.9543 | 70 | 27.6363 |
|
384 |
+
| 0.9679 | 71 | 26.9392 |
|
385 |
+
| 0.9815 | 72 | 24.69 |
|
386 |
+
| 0.9952 | 73 | 24.5999 |
|
387 |
+
|
388 |
+
|
389 |
+
### Framework Versions
|
390 |
+
- Python: 3.12.3
|
391 |
+
- Sentence Transformers: 3.3.1
|
392 |
+
- Transformers: 4.49.0
|
393 |
+
- PyTorch: 2.5.1
|
394 |
+
- Accelerate: 1.2.1
|
395 |
+
- Datasets: 2.19.0
|
396 |
+
- Tokenizers: 0.21.0
|
397 |
+
|
398 |
+
## Citation
|
399 |
+
|
400 |
+
### BibTeX
|
401 |
+
|
402 |
+
#### Sentence Transformers
|
403 |
+
```bibtex
|
404 |
+
@inproceedings{reimers-2019-sentence-bert,
|
405 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
406 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
407 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
408 |
+
month = "11",
|
409 |
+
year = "2019",
|
410 |
+
publisher = "Association for Computational Linguistics",
|
411 |
+
url = "https://arxiv.org/abs/1908.10084",
|
412 |
+
}
|
413 |
+
```
|
414 |
+
|
415 |
+
#### MultipleNegativesRankingLoss
|
416 |
+
```bibtex
|
417 |
+
@misc{henderson2017efficient,
|
418 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
419 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
420 |
+
year={2017},
|
421 |
+
eprint={1705.00652},
|
422 |
+
archivePrefix={arXiv},
|
423 |
+
primaryClass={cs.CL}
|
424 |
+
}
|
425 |
+
```
|
426 |
+
|
427 |
+
<!--
|
428 |
+
## Glossary
|
429 |
+
|
430 |
+
*Clearly define terms in order to be accessible across audiences.*
|
431 |
+
-->
|
432 |
+
|
433 |
+
<!--
|
434 |
+
## Model Card Authors
|
435 |
+
|
436 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
437 |
+
-->
|
438 |
+
|
439 |
+
<!--
|
440 |
+
## Model Card Contact
|
441 |
+
|
442 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
443 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "allenai/specter2_base",
|
3 |
+
"adapters": {
|
4 |
+
"adapters": {},
|
5 |
+
"config_map": {},
|
6 |
+
"fusion_config_map": {},
|
7 |
+
"fusions": {}
|
8 |
+
},
|
9 |
+
"architectures": [
|
10 |
+
"BertModel"
|
11 |
+
],
|
12 |
+
"attention_probs_dropout_prob": 0.1,
|
13 |
+
"classifier_dropout": null,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.49.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 31090
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32f1407fe668901c8dcce35b69a71363eddc0d23a6ea92ff11351e764697f8fa
|
3 |
+
size 219859384
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"101": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"102": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"103": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|