#!/usr/bin/env python3 import polars as pl import pandas as pd from joblib import load import argparse import logging import os import sys from io import StringIO import shap import numpy as np from bird_tool_utils import in_tempdir import extern from tqdm import tqdm # flatten a column that has lists as entries def flatten_columns(df, cols): """Flattens multiple columns in a data frame, cannot specify all columns!""" flattened_cols = {} for col in cols: flattened_cols[col] = pd.DataFrame([(index, value) for (index, values) in df[col].items() for value in values], columns=['index', col]).set_index('index') flattened_df = df.drop(cols, axis=1) for col in cols: flattened_df = flattened_df.join(flattened_cols[col]) return flattened_df # Returns a data frame with 'query' and 'eggNOG_OGs' columns for gene and the predictive cog that provides def read_annotations(annotations_path, predictive_cogs_series): # # equivalent of the following R: # annotations = train_accessions[,fread(cmd=paste('sed s=^.query=query= eggnog1_results/',accession,".faa.emapper.annotations |grep -v '^\\#'",sep='')),by=accession] # nrow(annotations) # a1 = pd.read_csv(annotations_path, sep="\t", comment='#', header=None) # a1.columns[0] = 'query' # a1[:,0] expected_columns = [ "query", "seed_ortholog", "evalue", "score", "eggNOG_OGs", "max_annot_lvl", "COG_category", "Description", "Preferred_name", "GOs", "EC", "KEGG_ko", "KEGG_Pathway", "KEGG_Module", "KEGG_Reaction", "KEGG_rclass", "BRITE", "KEGG_TC", "CAZy", "BiGG_Reaction", "PFAMs" ] if (len(a1.columns) != len(expected_columns)): raise Exception("Unexpected formation (number of columns) in eggnog-mapper .annotations file") a1.columns = expected_columns a2 = a1.loc[:, list(['query', 'eggNOG_OGs'])] a2.loc[:, 'eggNOG_OGs'] = a2['eggNOG_OGs'].str.split(",") a3 = flatten_columns(a2, ['eggNOG_OGs']) a4 = pd.merge(a3, predictive_cogs_series, on='eggNOG_OGs') # dcast - do all at once later # a5 = pd.pivot_table(data=a4, columns=predictive_cogs_series, aggfunc=sum, index=None) return a4 # Seems to require pandas 1.3.3 (or at least >1.2.2). Dummy first row should be removed first. def read_multiple_annotations(to_read, predictive_cogs_series): # read in a number of annotations # A dummy is needed so the right otherwise the pivot_table at the end fails with a KeyError # when predictive ones aren't found in any genomes. collected = pd.DataFrame({"accession": 'dummy', 'eggNOG_OGs': predictive_cogs_series, 'query': 'dummy'}) for ann in tqdm(to_read, desc="reading annotation files"): cogs = read_annotations(ann.strip(), predictive_cogs_series) cogs['accession'] = ann # if collected is None: # collected = cogs # else: collected = pd.concat([collected, cogs]) return collected if __name__ == '__main__': data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data') parent_parser = argparse.ArgumentParser() parent_parser.add_argument('--debug', help='output debug information', action="store_true") #parent_parser.add_argument('--version', help='output version information and quit', action='version', version=repeatm.__version__) parent_parser.add_argument('--quiet', help='only output errors', action="store_true") parent_parser.add_argument('--working-directory', help='working directory', default=None) parent_parser.add_argument('--protein-fasta', help='protein fasta file', required=True) parent_parser.add_argument('--annotation-table', help='Pre-calculated counts of COG / KO families in one or more genomes, in TSV format') # add missing annotations parent_parser.add_argument('--add-missing-annotations', help='when columns are missing, add them as 0 [default: croak]', action="store_true") parent_parser.add_argument('--threads', help='number of threads to use', default=1, type=int) eggnog_parser = parent_parser.add_mutually_exclusive_group() eggnog_parser.add_argument('--eggnog-data-dir', help='eggnog data directory e.g. ~/m/db/eggnog-mapper/2.1.3') eggnog_parser.add_argument('--eggnog-annotation-file', help='eggnog .annotation file') kofam_parser = parent_parser.add_mutually_exclusive_group() kofam_parser.add_argument('--kofam-hmm-path', help='path to kofam hmm', default=os.path.join(data_dir, 'kofam-2022-01-30-profiles.hmm')) kofam_parser.add_argument('--kofam-tsv-file', help='hmmsearch output file') # whitelist default to 'data/COGs_with_more_than_50_percent_remaining.tsv' parent_parser.add_argument('--whitelist', help='whitelist of COGs to use', default=os.path.join(data_dir, 'COGs_with_more_than_50_percent_remaining.tsv')) parent_parser.add_argument('--modal-keggs', help='modal keggs', default=os.path.join(data_dir, 'ModalKEGGs.tsv')) parent_parser.add_argument('--modal-keggs-with-names', help='modal keggs with names', default=os.path.join(data_dir, 'modal_keggs_with_names.csv')) # ./12_apply_model.py --model the.model -x the.x --training-data-header <(head the.training-data-header) parent_parser.add_argument('--models', nargs='+', help='models to use', default=[os.path.join(data_dir, '..', 'XGBoost.model')]) parent_parser.add_argument('--training-data-header', help='header of training data', default=os.path.join(data_dir, 'training_data_header.tsv')) parent_parser.add_argument('--output-predictions', help='output predictions') parent_parser.add_argument('--output-annotations', help='output annotations, and exit, do not apply models') parent_parser.add_argument('--output-shap-values', help='output SHAP values i.e. which genes are predictive, to the specified file') args = parent_parser.parse_args() # Setup logging if args.debug: loglevel = logging.DEBUG elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.INFO logging.basicConfig(level=loglevel, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%d/%m/%Y %I:%M:%S %p') # Read training data header eg_data = pl.read_csv(args.training_data_header, separator="\t", has_header=True) header = eg_data.select(pl.exclude(['accession', 'false_negative_rate', 'false_positive_rate'])).columns # Blacklist these as they aren't in the current ancestral file, not sure why header = list([h for h in header if h not in ['COG0411', 'COG0459', 'COG0564', 'COG1344', 'COG4177']]) if not args.annotation_table: if not args.eggnog_data_dir and not args.eggnog_annotation_file: raise Exception("Either --annotations, --eggnog-data-dir or --eggnog-annotation-file must be specified") if not args.kofam_hmm_path and not args.kofam_tsv_file: raise Exception("Either --annotations, --kofam-hmm-path or --kofam-tsv-file must be specified") if not args.output_predictions and not args.output_annotations: raise Exception("Either --output-predictions or --output-annotations must be specified") # Gather abs paths so chdir to working directory doesn't break things working_directory = None if args.working_directory: working_directory = os.path.abspath(args.working_directory) protein_fasta = os.path.abspath(args.protein_fasta) if args.eggnog_data_dir: eggnog_data_dir = os.path.abspath(args.eggnog_data_dir) if args.eggnog_annotation_file: eggnog_annotation_file = os.path.abspath(args.eggnog_annotation_file) if args.kofam_hmm_path: kofam_hmm_path = os.path.abspath(args.kofam_hmm_path) if args.kofam_tsv_file: kofam_tsv_file = os.path.abspath(args.kofam_tsv_file) modal_keggs = os.path.abspath(args.modal_keggs) if args.annotation_table: if args.output_annotations: logging.error("Cannot specify --annotation-table and --output-annotations") sys.exit(1) logging.info("Reading annotation table ..") raw = pl.read_csv(args.annotation_table, separator='\t') if args.add_missing_annotations: added_column_count = 0 for h in header: if h not in raw.columns: raw = raw.with_columns(pl.lit(0).alias(h)) added_column_count = 0 if added_column_count > 0: logging.info("Added {} extra 0 count columns to annotation table".format(added_column_count)) d5 = raw.to_pandas()[header] accessions = list(raw['accession']) else: logging.info("Reading or calculating annotations not from a table ..") with in_tempdir(): logging.info("Created temp working directory {}".format(os.getcwd())) if args.working_directory: logging.info("Changing working directory to {}".format(working_directory)) if not os.path.exists(working_directory): logging.info("Creating working directory {}".format(working_directory)) os.makedirs(working_directory) os.chdir(working_directory) logging.info("Reading in COG whitelist") whitelist1 = open(args.whitelist).read().splitlines() logging.info("Found {} COGs in the whitelist".format(len(whitelist1))) # Run eggnog-mapper if needed predictive_cogs_series = pd.Series(["{}@1|root".format(c) for c in whitelist1], name='eggNOG_OGs') if args.eggnog_annotation_file: logging.info("Reading EGNOG annotations from supplied file") cog_annotations = read_annotations(eggnog_annotation_file, predictive_cogs_series) else: logging.info("Running eggnog-mapper") eggnog_output = 'eggnog_output' extern.run( f'EGGNOG_DATA_DIR={eggnog_data_dir} emapper.py -m diamond -i {protein_fasta} --target_orthologs one2one --query_cover 50.0 --evalue 0.0000001 --cpu {args.threads} -o {eggnog_output}' ) cog_annotations = read_multiple_annotations( [eggnog_output+'.emapper.annotations'], predictive_cogs_series) # Run hmmsearch in required if args.kofam_tsv_file: hmmsearch_tblout = kofam_tsv_file else: # $ ls proteomes/*faa |parallel hmmsearch --tblout kegg_annotations/annotations/{/}.hmmsearch_tblout.csv -o /dev/null --notextw --cpu 1 ~/m/db/kofam/2022-01-30/profiles.hmm {} logging.info("Running hmmsearch") hmmsearch_tblout = 'hmmsearch_tblout.csv' extern.run( f'hmmsearch --tblout {hmmsearch_tblout} -o /dev/null --notextw --cpu {args.threads} {kofam_hmm_path} {protein_fasta}' ) # and then we take the best hit for each protein # $ ls kegg_annotations/annotations/*_tblout.csv |parallel -j10 ./7_process_kegg_hmmsearch.py --input-tblout {} --output-csv kegg_annotations/best_hits/{/}.best_hits.csv &>7_process_kegg_hmmsearch.py.log hits = extern.run("sed 's/ */\t/g' {} |cut -f1-6 |grep -v '^#'".format(hmmsearch_tblout)) hmmsearch_best_hits_df = pd.read_csv(StringIO(hits), sep='\t', header=None) hmmsearch_best_hits_df = hmmsearch_best_hits_df.loc[:, [0, 2, 4, 5]] logging.info("Read in {} annotations".format(len(hmmsearch_best_hits_df))) hmmsearch_best_hits_df.columns = ['query', 'target', 'evalue', 'score'] hmmsearch_best_hits_df2 = hmmsearch_best_hits_df.groupby('query', as_index=False).apply( lambda x: x.nsmallest(1, 'evalue')).reset_index().loc[:, ['query', 'target', 'evalue', 'score']] logging.info("Found {} unique HMM annotations".format(len(hmmsearch_best_hits_df2))) # Process eggNOG annotations cog_annotations.loc[:, 'eggNOG_OGs'] = [x.replace('@1|root', '') for x in cog_annotations['eggNOG_OGs']] # Remove rows with dummy accession # cog_annotations = cog_annotations[cog_annotations['accession'] != 'dummy'] # fixed_accessions = [] # r = re.compile(r'.*/(.*)_protein.faa.gz.emapper.annotations') # for acc in cog_annotations['accession']: # m = r.match(acc) # if m: # fixed_accessions.append(m.group(1)) # else: # raise Exception("Regex {} failed to match accession {}".format(r, acc)) # cog_annotations.loc[:, 'accession'] = fixed_accessions logging.info("Read in {} cog_annotations".format(len(cog_annotations))) # Read in modal KEGGs for each COG grouping kegg_pairings = pd.read_csv(modal_keggs, sep="\t", header=None, names=['cog', 'kegg']) kegg_cog = pd.merge(hmmsearch_best_hits_df, cog_annotations, on='query') kegg_cog.loc[:, 'cog=kegg'] = kegg_cog['eggNOG_OGs'] + '=' + kegg_cog['target'] kegg_pairings.loc[:, 'cog=kegg'] = kegg_pairings['cog'] + '=' + kegg_pairings['kegg'] medianed = pd.merge(kegg_cog.loc[:, ['cog=kegg']], kegg_pairings, on='cog=kegg') medianed.columns = ['cog=kegg', 'cog', 'kegg'] medianed['accession'] = 'query_genome' wide_table = pd.pivot_table(medianed.loc[:, ['accession','cog']], index='accession', aggfunc=len, columns='cog', values='cog', fill_value=0) whitelist = ['accession'] + whitelist1 # do intersect because some COGs are in whitelist but not in any genomes wide_table2 = wide_table.loc[:, wide_table.columns.intersection(whitelist)] # # Read in data # # d = pl.read_csv('TableAncestralRoot1.tsv',sep="\t") # d = pd.read_csv(args.x, sep="\t") # logging.info("Read in input data of shape {}".format(d.shape)) # # Collapse counts of each COG subfamily # d2 = d # d2['COG'] = d2['COG'].str.split('_').str[0] # d3 = d2.groupby('COG').sum() # d4 = d3.transpose() wide_table2_melt_plus = pd.concat([wide_table2.melt(), pd.DataFrame({'cog': header, 'value': 0})]) wide_table2_melt_plus2 = pl.DataFrame(wide_table2_melt_plus).groupby('cog').sum() wide_table2_melt_plus2 = wide_table2_melt_plus2.with_columns(pl.lit('query_genome').alias('accession')) wide_table2_melt_plus_pivot = wide_table2_melt_plus2.pivot(index='accession', columns='cog', values='value', aggregate_function='sum') # Reorder columns to be the same as the training dataset d5 = wide_table2_melt_plus_pivot.to_pandas()[header] if args.output_annotations: d6 = d5 d6['accession'] = args.protein_fasta d6.to_csv(args.output_annotations, sep="\t", index=False) logging.info("Wrote annotation table to {}".format(args.output_annotations)) # d6 is a shallow copy, so reset columns d5 = d5[header] if args.models is None: logging.info("Skipping model application, since no models were specified") else: if args.output_shap_values: logging.info("Reading in modal KEGGs with names") modal_keggs = pd.read_csv(args.modal_keggs_with_names,sep="\t") modal_keggs.index = modal_keggs['cog'] columns2 = pd.Series(['{} {} {}'.format(cog, ko, ko_name) for cog, ko, ko_name in zip(modal_keggs.loc[d5.columns,'cog'], modal_keggs.loc[d5.columns,'ko'], modal_keggs.loc[d5.columns, 'ko_name'])]) dup_columns = columns2.duplicated() columns2 = ["{}_{}".format(c,i) if is_dup else c for c,i,is_dup in zip(columns2, range(len(columns2)), dup_columns)] kos_and_names_column_names = [c.replace('[', '').replace(']', '').replace('<', '_') for c in columns2] all_results = [] for model_path in args.models: logging.info("Loading model {}".format(model_path)) model = load(model_path) logging.info("Loaded model {}".format(model_path)) doing_perceptron = 'Perceptron' in model_path preds = model.predict(d5) # if doing_perceptron: # probas = pl.lit(-1.0) # else: # probas = model.predict_proba(d5)[:,1] results = pl.DataFrame({ 'node': accessions if args.annotation_table else args.protein_fasta, 'preds': preds}) results = results.select( pl.col('node'), pl.col('preds').alias('prediction').cast(pl.Int64), # pl.col('proba').alias('probability').cast(pl.Float64), pl.lit(model_path).alias('model')) if doing_perceptron: results = results.with_columns(pl.lit(-1.0).alias('probability').cast(pl.Float64)) else: results = results.with_columns(pl.lit(model.predict_proba(d5)[:, 1]).alias('probability').cast(pl.Float64)) all_results.append(results) if args.output_shap_values: explainer = shap.TreeExplainer(model.steps[1][1]) X_pred_scaled = pd.DataFrame(model.steps[0][1].transform(d5), columns=d5.columns) X_pred_scaled.columns = kos_and_names_column_names shap_values = explainer.shap_values(X_pred_scaled) all_shaps = list(reversed(np.argsort(np.abs(shap_values).mean(0)))) all_shaps_names = X_pred_scaled.columns[all_shaps] pl.DataFrame({ 'rank': range(1, len(all_shaps) + 1), 'copy_number': list(d5.iloc[:, all_shaps].values[0]), 'shap_value': list(shap_values[:, all_shaps].mean(0)), 'abs_shap_value': list(np.abs(shap_values[:, all_shaps]).mean(0)), 'gene': list(all_shaps_names), }).write_csv(args.output_shap_values, separator="\t") logging.info("Wrote SHAP values and gene annotations to {}".format(args.output_shap_values)) pl.concat(all_results).write_csv(args.output_predictions, separator="\t") logging.info("Wrote predictions to {}".format(args.output_predictions))