wwood commited on
Commit
ebe9215
·
1 Parent(s): 5d60a3a

README: Update it.

Browse files
Files changed (1) hide show
  1. README.md +9 -2
README.md CHANGED
@@ -7,6 +7,12 @@ library_name: sklearn
7
 
8
  Prediction of aerobicity (whether an bacteria or archaeon is aerobic) based on gene copy numbers. The prediction problem is posed as a 2-class problem (the prediction is either aerobic or anaerobic).
9
 
 
 
 
 
 
 
10
  To apply the predictor, first setup the conda environment:
11
 
12
  ```
@@ -15,13 +21,14 @@ $ mamba env create -p env -f env-apply.yml
15
  $ conda activate ./env
16
  ```
17
 
18
- and download the eggNOG database (we use version 2.1.3 for repro)
19
 
20
  ```
21
  $ download_eggnog_data.py
22
  ```
23
 
24
- Then, to apply the predictor, run against a test genome, replacing `EGGNOG_DATA_DIR` with the path to the eggNOG data directory:
 
25
 
26
  ```
27
  $ ./17_apply_to_proteome.py --protein-fasta data/RS_GCF_000515355.1_protein.faa --eggnog-data-dir EGGNOG_DATA_DIR
 
7
 
8
  Prediction of aerobicity (whether an bacteria or archaeon is aerobic) based on gene copy numbers. The prediction problem is posed as a 2-class problem (the prediction is either aerobic or anaerobic).
9
 
10
+ This predictor was used in this (currently pre-publication) manuscript, please cite it if appropriate:
11
+
12
+ Davin, Adrian A., Ben J. Woodcroft, Rochelle M. Soo, Ranjani Murali, Dominik Schrempf, James Clark, Bastien Boussau et al. "An evolutionary timescale for Bacteria calibrated using the Great Oxidation Event." bioRxiv (2023): 2023-08.
13
+ https://www.biorxiv.org/content/10.1101/2023.08.08.552427v1.full
14
+
15
+ ## Installation
16
  To apply the predictor, first setup the conda environment:
17
 
18
  ```
 
21
  $ conda activate ./env
22
  ```
23
 
24
+ and download the eggNOG database (we use version 2.1.3, as specified in the `env-apply.yml` conda environment file)
25
 
26
  ```
27
  $ download_eggnog_data.py
28
  ```
29
 
30
+ ## Usage
31
+ To apply the predictor, run against a test genome, replacing `EGGNOG_DATA_DIR` with the path to the eggNOG data directory:
32
 
33
  ```
34
  $ ./17_apply_to_proteome.py --protein-fasta data/RS_GCF_000515355.1_protein.faa --eggnog-data-dir EGGNOG_DATA_DIR