wwood commited on
Commit
7a7e4ca
·
1 Parent(s): 2cfa32b

README: Update as per Rizky's suggestions.

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -14,32 +14,33 @@ https://www.biorxiv.org/content/10.1101/2023.08.08.552427v1.full
14
 
15
  ## Installation
16
 
17
- First clone this repository, using
 
 
18
 
19
  ```
20
- $ git lfs install
21
- $ git clone https://huggingface.co/wwood/aerobicity
22
  ```
23
 
24
  Then setup the conda environment:
25
 
26
  ```
27
- $ cd aerobicity
28
- $ mamba env create -p env -f env-apply.yml
29
- $ conda activate ./env
30
  ```
31
 
32
  and download the eggNOG database. We use version 2.1.3, as specified in the `env-apply.yml` conda environment file, because this is what the predictor was trained on. The eggNOG database is large, so it is not included in the repository. To download it, run:
33
 
34
  ```
35
- $ download_eggnog_data.py
36
  ```
37
 
38
  ## Usage
39
  To apply the predictor, run against a test genome, replacing `EGGNOG_DATA_DIR` with the path to the eggNOG data directory:
40
 
41
  ```
42
- $ ./17_apply_to_proteome.py --protein-fasta data/RS_GCF_000515355.1_protein.faa --eggnog-data-dir EGGNOG_DATA_DIR
43
  --models XGBoost.model --output-predictions predictions.csv
44
  ```
45
 
 
14
 
15
  ## Installation
16
 
17
+ First ensure you have installed git-lfs (including running `git lfs install`), as described at https://www.atlassian.com/git/tutorials/git-lfs#installing-git-lfs
18
+
19
+ Then clone this repository, using
20
 
21
  ```
22
+ git clone https://huggingface.co/wwood/aerobicity
 
23
  ```
24
 
25
  Then setup the conda environment:
26
 
27
  ```
28
+ cd aerobicity
29
+ mamba env create -p env -f env-apply.yml
30
+ conda activate ./env
31
  ```
32
 
33
  and download the eggNOG database. We use version 2.1.3, as specified in the `env-apply.yml` conda environment file, because this is what the predictor was trained on. The eggNOG database is large, so it is not included in the repository. To download it, run:
34
 
35
  ```
36
+ download_eggnog_data.py
37
  ```
38
 
39
  ## Usage
40
  To apply the predictor, run against a test genome, replacing `EGGNOG_DATA_DIR` with the path to the eggNOG data directory:
41
 
42
  ```
43
+ ./17_apply_to_proteome.py --protein-fasta data/RS_GCF_000515355.1_protein.faa --eggnog-data-dir EGGNOG_DATA_DIR
44
  --models XGBoost.model --output-predictions predictions.csv
45
  ```
46