File size: 18,835 Bytes
074b7a0
 
 
 
 
 
 
 
 
 
c207928
 
074b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c207928
074b7a0
092c39c
074b7a0
 
 
 
 
c207928
074b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bd5212
 
074b7a0
ef69a08
 
 
c207928
 
 
 
 
 
 
 
 
ef69a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074b7a0
c207928
 
 
 
 
 
 
 
 
 
 
 
8bd5212
c207928
 
 
 
 
 
ef69a08
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/env python3

import polars as pl
import pandas as pd
from joblib import load
import argparse
import logging
import os
import sys
from io import StringIO
import shap
import numpy as np

from bird_tool_utils import in_tempdir
import extern
from tqdm import tqdm


# flatten a column that has lists as entries
def flatten_columns(df, cols):
    """Flattens multiple columns in a data frame, cannot specify all columns!"""
    flattened_cols = {}
    for col in cols:
        flattened_cols[col] = pd.DataFrame([(index, value) for (index, values) in df[col].items() for value in values],
                                           columns=['index', col]).set_index('index')
    flattened_df = df.drop(cols, axis=1)
    for col in cols:
        flattened_df = flattened_df.join(flattened_cols[col])
    return flattened_df


# Returns a data frame with 'query' and 'eggNOG_OGs' columns for gene and the predictive cog that provides
def read_annotations(annotations_path, predictive_cogs_series):
    #
    # equivalent of the following R:
    # annotations = train_accessions[,fread(cmd=paste('sed s=^.query=query= eggnog1_results/',accession,".faa.emapper.annotations  |grep -v '^\\#'",sep='')),by=accession]
    # nrow(annotations)
    #
    a1 = pd.read_csv(annotations_path, sep="\t", comment='#', header=None)
    # a1.columns[0] = 'query'
    # a1[:,0]
    expected_columns = [
        "query", "seed_ortholog", "evalue", "score", "eggNOG_OGs", "max_annot_lvl", "COG_category", "Description",
        "Preferred_name", "GOs", "EC", "KEGG_ko", "KEGG_Pathway", "KEGG_Module", "KEGG_Reaction", "KEGG_rclass",
        "BRITE", "KEGG_TC", "CAZy", "BiGG_Reaction", "PFAMs"
    ]
    if (len(a1.columns) != len(expected_columns)):
        raise Exception("Unexpected formation (number of columns) in eggnog-mapper .annotations file")
    a1.columns = expected_columns

    a2 = a1.loc[:, list(['query', 'eggNOG_OGs'])]
    a2.loc[:, 'eggNOG_OGs'] = a2['eggNOG_OGs'].str.split(",")

    a3 = flatten_columns(a2, ['eggNOG_OGs'])
    a4 = pd.merge(a3, predictive_cogs_series, on='eggNOG_OGs')

    # dcast - do all at once later
    # a5 = pd.pivot_table(data=a4, columns=predictive_cogs_series, aggfunc=sum, index=None)

    return a4


# Seems to require pandas 1.3.3 (or at least >1.2.2). Dummy first row should be removed first.
def read_multiple_annotations(to_read, predictive_cogs_series):  # read in a number of annotations
    # A dummy is needed so the right otherwise the pivot_table at the end fails with a KeyError
    # when predictive ones aren't found in any genomes.
    collected = pd.DataFrame({"accession": 'dummy', 'eggNOG_OGs': predictive_cogs_series, 'query': 'dummy'})

    for ann in tqdm(to_read, desc="reading annotation files"):
        cogs = read_annotations(ann.strip(), predictive_cogs_series)
        cogs['accession'] = ann
        # if collected is None:
        #     collected = cogs
        # else:
        collected = pd.concat([collected, cogs])
    return collected


if __name__ == '__main__':
    data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data')

    parent_parser = argparse.ArgumentParser()
    parent_parser.add_argument('--debug', help='output debug information', action="store_true")
    #parent_parser.add_argument('--version', help='output version information and quit',  action='version', version=repeatm.__version__)
    parent_parser.add_argument('--quiet', help='only output errors', action="store_true")

    parent_parser.add_argument('--working-directory', help='working directory', default=None)
    parent_parser.add_argument('--protein-fasta', help='protein fasta file', required=True)

    parent_parser.add_argument('--annotation-table', help='Pre-calculated counts of COG / KO families in one or more genomes, in TSV format')
    # add missing annotations
    parent_parser.add_argument('--add-missing-annotations', help='when columns are missing, add them as 0 [default: croak]', action="store_true")
    
    parent_parser.add_argument('--threads', help='number of threads to use', default=1, type=int)
    
    eggnog_parser = parent_parser.add_mutually_exclusive_group()
    eggnog_parser.add_argument('--eggnog-data-dir',
                               help='eggnog data directory e.g. ~/m/db/eggnog-mapper/2.1.3')
    eggnog_parser.add_argument('--eggnog-annotation-file', help='eggnog .annotation file')

    kofam_parser = parent_parser.add_mutually_exclusive_group()
    kofam_parser.add_argument('--kofam-hmm-path',
                               help='path to kofam hmm',
                               default=os.path.join(data_dir, 'kofam-2022-01-30-profiles.hmm'))
    kofam_parser.add_argument('--kofam-tsv-file', help='hmmsearch output file')

    # whitelist default to 'data/COGs_with_more_than_50_percent_remaining.tsv'
    parent_parser.add_argument('--whitelist', help='whitelist of COGs to use', default=os.path.join(data_dir, 'COGs_with_more_than_50_percent_remaining.tsv'))

    parent_parser.add_argument('--modal-keggs', help='modal keggs', default=os.path.join(data_dir, 'ModalKEGGs.tsv'))
    parent_parser.add_argument('--modal-keggs-with-names', help='modal keggs with names', default=os.path.join(data_dir, 'modal_keggs_with_names.csv'))
    # ./12_apply_model.py --model the.model -x the.x --training-data-header <(head the.training-data-header)
    parent_parser.add_argument('--models', nargs='+', help='models to use', default=[os.path.join(data_dir, '..', 'XGBoost.model')])

    parent_parser.add_argument('--training-data-header', help='header of training data', default=os.path.join(data_dir, 'training_data_header.tsv'))
    
    parent_parser.add_argument('--output-predictions', help='output predictions')
    parent_parser.add_argument('--output-annotations', help='output annotations, and exit, do not apply models')
    parent_parser.add_argument('--output-shap-values', help='output SHAP values i.e. which genes are predictive, to the specified file')
    args = parent_parser.parse_args()

    # Setup logging
    if args.debug:
        loglevel = logging.DEBUG
    elif args.quiet:
        loglevel = logging.ERROR
    else:
        loglevel = logging.INFO
    logging.basicConfig(level=loglevel, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%d/%m/%Y %I:%M:%S %p')

    # Read training data header
    eg_data = pl.read_csv(args.training_data_header, separator="\t", has_header=True)
    header = eg_data.select(pl.exclude(['accession', 'false_negative_rate', 'false_positive_rate'])).columns
    # Blacklist these as they aren't in the current ancestral file, not sure why
    header = list([h for h in header if h not in ['COG0411', 'COG0459', 'COG0564', 'COG1344', 'COG4177']])

    if not args.annotation_table:
        if not args.eggnog_data_dir and not args.eggnog_annotation_file:
            raise Exception("Either --annotations, --eggnog-data-dir or --eggnog-annotation-file must be specified")
        if not args.kofam_hmm_path and not args.kofam_tsv_file:
            raise Exception("Either --annotations, --kofam-hmm-path or --kofam-tsv-file must be specified")
    
    if not args.output_predictions and not args.output_annotations:
        raise Exception("Either --output-predictions or --output-annotations must be specified")

    # Gather abs paths so chdir to working directory doesn't break things
    working_directory = None
    if args.working_directory:
        working_directory = os.path.abspath(args.working_directory)
    protein_fasta = os.path.abspath(args.protein_fasta)
    if args.eggnog_data_dir:
        eggnog_data_dir = os.path.abspath(args.eggnog_data_dir)
    if args.eggnog_annotation_file:
        eggnog_annotation_file = os.path.abspath(args.eggnog_annotation_file)
    if args.kofam_hmm_path:
        kofam_hmm_path = os.path.abspath(args.kofam_hmm_path)
    if args.kofam_tsv_file:
        kofam_tsv_file = os.path.abspath(args.kofam_tsv_file)

    modal_keggs = os.path.abspath(args.modal_keggs)

    if args.annotation_table:
        if args.output_annotations:
            logging.error("Cannot specify --annotation-table and --output-annotations")
            sys.exit(1)
        logging.info("Reading annotation table ..")
        raw = pl.read_csv(args.annotation_table, separator='\t')
        if args.add_missing_annotations:
            added_column_count = 0
            for h in header:
                if h not in raw.columns:
                    raw = raw.with_columns(pl.lit(0).alias(h))
                    added_column_count = 0
            if added_column_count > 0:
                logging.info("Added {} extra 0 count columns to annotation table".format(added_column_count))
        d5 = raw.to_pandas()[header]
        accessions = list(raw['accession'])
    else:
        logging.info("Reading or calculating annotations not from a table ..")
        with in_tempdir():
            logging.info("Created temp working directory {}".format(os.getcwd()))
            if args.working_directory:
                logging.info("Changing working directory to {}".format(working_directory))
                if not os.path.exists(working_directory):
                    logging.info("Creating working directory {}".format(working_directory))
                    os.makedirs(working_directory)
                os.chdir(working_directory)

            logging.info("Reading in COG whitelist")
            whitelist1 = open(args.whitelist).read().splitlines()
            logging.info("Found {} COGs in the whitelist".format(len(whitelist1)))

            # Run eggnog-mapper if needed
            predictive_cogs_series = pd.Series(["{}@1|root".format(c) for c in whitelist1], name='eggNOG_OGs')
            if args.eggnog_annotation_file:
                logging.info("Reading EGNOG annotations from supplied file")
                cog_annotations = read_annotations(eggnog_annotation_file, predictive_cogs_series)
            else:
                logging.info("Running eggnog-mapper")
                eggnog_output = 'eggnog_output'
                extern.run(
                    f'EGGNOG_DATA_DIR={eggnog_data_dir} emapper.py -m diamond -i {protein_fasta} --target_orthologs one2one --query_cover 50.0 --evalue 0.0000001 --cpu {args.threads} -o {eggnog_output}'
                )
                cog_annotations = read_multiple_annotations(
                    [eggnog_output+'.emapper.annotations'],
                    predictive_cogs_series)

            # Run hmmsearch in required
            if args.kofam_tsv_file:
                hmmsearch_tblout = kofam_tsv_file
            else:
                # $ ls proteomes/*faa |parallel hmmsearch --tblout kegg_annotations/annotations/{/}.hmmsearch_tblout.csv -o /dev/null --notextw --cpu 1 ~/m/db/kofam/2022-01-30/profiles.hmm {}
                logging.info("Running hmmsearch")
                hmmsearch_tblout = 'hmmsearch_tblout.csv'
                extern.run(
                    f'hmmsearch --tblout {hmmsearch_tblout} -o /dev/null --notextw --cpu {args.threads} {kofam_hmm_path} {protein_fasta}'
                )

            # and then we take the best hit for each protein
            # $ ls kegg_annotations/annotations/*_tblout.csv |parallel -j10 ./7_process_kegg_hmmsearch.py --input-tblout {} --output-csv kegg_annotations/best_hits/{/}.best_hits.csv &>7_process_kegg_hmmsearch.py.log
            hits = extern.run("sed 's/  */\t/g' {} |cut -f1-6 |grep -v '^#'".format(hmmsearch_tblout))
            hmmsearch_best_hits_df = pd.read_csv(StringIO(hits), sep='\t', header=None)
            hmmsearch_best_hits_df = hmmsearch_best_hits_df.loc[:, [0, 2, 4, 5]]
            logging.info("Read in {} annotations".format(len(hmmsearch_best_hits_df)))

            hmmsearch_best_hits_df.columns = ['query', 'target', 'evalue', 'score']
            hmmsearch_best_hits_df2 = hmmsearch_best_hits_df.groupby('query', as_index=False).apply(
                lambda x: x.nsmallest(1, 'evalue')).reset_index().loc[:, ['query', 'target', 'evalue', 'score']]
            logging.info("Found {} unique HMM annotations".format(len(hmmsearch_best_hits_df2)))

            # Process eggNOG annotations
            cog_annotations.loc[:, 'eggNOG_OGs'] = [x.replace('@1|root', '') for x in cog_annotations['eggNOG_OGs']]
            # Remove rows with dummy accession
            # cog_annotations = cog_annotations[cog_annotations['accession'] != 'dummy']
            # fixed_accessions = []
            # r = re.compile(r'.*/(.*)_protein.faa.gz.emapper.annotations')
            # for acc in cog_annotations['accession']:
            #     m = r.match(acc)
            #     if m:
            #         fixed_accessions.append(m.group(1))
            #     else:
            #         raise Exception("Regex {} failed to match accession {}".format(r, acc))
            # cog_annotations.loc[:, 'accession'] = fixed_accessions
            logging.info("Read in {} cog_annotations".format(len(cog_annotations)))

            # Read in modal KEGGs for each COG grouping
            kegg_pairings = pd.read_csv(modal_keggs, sep="\t", header=None, names=['cog', 'kegg'])

            kegg_cog = pd.merge(hmmsearch_best_hits_df, cog_annotations, on='query')
            kegg_cog.loc[:, 'cog=kegg'] = kegg_cog['eggNOG_OGs'] + '=' + kegg_cog['target']
            kegg_pairings.loc[:, 'cog=kegg'] = kegg_pairings['cog'] + '=' + kegg_pairings['kegg']

            medianed = pd.merge(kegg_cog.loc[:, ['cog=kegg']], kegg_pairings, on='cog=kegg')
            medianed.columns = ['cog=kegg', 'cog', 'kegg']
            medianed['accession'] = 'query_genome'

            wide_table = pd.pivot_table(medianed.loc[:, ['accession','cog']],
                                        index='accession',
                                        aggfunc=len,
                                        columns='cog',
                                        values='cog',
                                        fill_value=0)

            whitelist = ['accession'] + whitelist1
            # do intersect because some COGs are in whitelist but not in any genomes
            wide_table2 = wide_table.loc[:, wide_table.columns.intersection(whitelist)]

            # # Read in data
            # # d = pl.read_csv('TableAncestralRoot1.tsv',sep="\t")
            # d = pd.read_csv(args.x, sep="\t")
            # logging.info("Read in input data of shape {}".format(d.shape))

            # # Collapse counts of each COG subfamily
            # d2 = d
            # d2['COG'] = d2['COG'].str.split('_').str[0]
            # d3 = d2.groupby('COG').sum()
            # d4 = d3.transpose()

            wide_table2_melt_plus = pd.concat([wide_table2.melt(), pd.DataFrame({'cog': header, 'value': 0})])
            wide_table2_melt_plus2 = pl.DataFrame(wide_table2_melt_plus).groupby('cog').sum()
            wide_table2_melt_plus2 = wide_table2_melt_plus2.with_columns(pl.lit('query_genome').alias('accession'))
            wide_table2_melt_plus_pivot = wide_table2_melt_plus2.pivot(index='accession', columns='cog', values='value', aggregate_function='sum')

        # Reorder columns to be the same as the training dataset
        d5 = wide_table2_melt_plus_pivot.to_pandas()[header]

        if args.output_annotations:
            d6 = d5
            d6['accession'] = args.protein_fasta
            d6.to_csv(args.output_annotations, sep="\t", index=False)
            logging.info("Wrote annotation table to {}".format(args.output_annotations))
            # d6 is a shallow copy, so reset columns
            d5 = d5[header]

    if args.models is None:
        logging.info("Skipping model application, since no models were specified")
    else:
        if args.output_shap_values:
            logging.info("Reading in modal KEGGs with names")
            modal_keggs = pd.read_csv(args.modal_keggs_with_names,sep="\t")
            modal_keggs.index = modal_keggs['cog']
            columns2 = pd.Series(['{} {} {}'.format(cog, ko, ko_name) for cog, ko, ko_name in zip(modal_keggs.loc[d5.columns,'cog'], modal_keggs.loc[d5.columns,'ko'], modal_keggs.loc[d5.columns, 'ko_name'])])
            dup_columns = columns2.duplicated()
            columns2 = ["{}_{}".format(c,i) if is_dup else c for c,i,is_dup in zip(columns2, range(len(columns2)), dup_columns)]
            kos_and_names_column_names = [c.replace('[', '').replace(']', '').replace('<', '_') for c in columns2]

        all_results = []
        for model_path in args.models:
            logging.info("Loading model {}".format(model_path))
            model = load(model_path)
            logging.info("Loaded model {}".format(model_path))

            doing_perceptron = 'Perceptron' in model_path

            preds = model.predict(d5)
            # if doing_perceptron:
            #     probas = pl.lit(-1.0)
            # else:
            #     probas = model.predict_proba(d5)[:,1]

            results = pl.DataFrame({
                'node': accessions if args.annotation_table else args.protein_fasta,
                'preds': preds})
            results = results.select(
                pl.col('node'),
                pl.col('preds').alias('prediction').cast(pl.Int64),
                # pl.col('proba').alias('probability').cast(pl.Float64),
                pl.lit(model_path).alias('model'))
            if doing_perceptron:
                results = results.with_columns(pl.lit(-1.0).alias('probability').cast(pl.Float64))
            else:
                results = results.with_columns(pl.lit(model.predict_proba(d5)[:, 1]).alias('probability').cast(pl.Float64))
            all_results.append(results)

            if args.output_shap_values:
                explainer = shap.TreeExplainer(model.steps[1][1])
                X_pred_scaled = pd.DataFrame(model.steps[0][1].transform(d5), columns=d5.columns)

                X_pred_scaled.columns = kos_and_names_column_names
                shap_values = explainer.shap_values(X_pred_scaled)

                all_shaps = list(reversed(np.argsort(np.abs(shap_values).mean(0))))
                all_shaps_names = X_pred_scaled.columns[all_shaps]

                pl.DataFrame({
                    'rank': range(1, len(all_shaps) + 1),
                    'copy_number': list(d5.iloc[:, all_shaps].values[0]),
                    'shap_value': list(shap_values[:, all_shaps].mean(0)),
                    'abs_shap_value': list(np.abs(shap_values[:, all_shaps]).mean(0)),
                    'gene': list(all_shaps_names),
                }).write_csv(args.output_shap_values, separator="\t")
                logging.info("Wrote SHAP values and gene annotations to {}".format(args.output_shap_values))

        pl.concat(all_results).write_csv(args.output_predictions, separator="\t")
        logging.info("Wrote predictions to {}".format(args.output_predictions))