Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-Walker2DBulletEnv-v0.zip +3 -0
- ppo-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- ppo-Walker2DBulletEnv-v0/data +120 -0
- ppo-Walker2DBulletEnv-v0/policy.optimizer.pth +3 -0
- ppo-Walker2DBulletEnv-v0/policy.pth +3 -0
- ppo-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- ppo-Walker2DBulletEnv-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 2352.18 +/- 12.20
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2DBulletEnv-v0
|
20 |
+
type: Walker2DBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **Walker2DBulletEnv-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbfd2dd2a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbfd2dd2b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbfd2dd2b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbfd2dd2c20>", "_build": "<function ActorCriticPolicy._build at 0x7fbfd2dd2cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbfd2dd2d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbfd2dd2dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbfd2dd2e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbfd2dd2ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbfd2dd2f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbfd2dd9050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbfd2e22780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 2007040, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658043051.6085303, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAy+RcvwAAAAAg6wQ1oJfaPgAAAAAuomC/AAAAAMQZQL/61/m/Guwwv5c6iz/v6PG/7rC6Pcbf7b58AIA/vXYhPY9V4L+DQK6+W+I3P//BAr5+OrC/6hCQvzXgHrwAAAAAIOsENQy4TD8AAAAAcQcRPwAAAACGJ9W+t4bpvsz9iT8SSHK9brGLvv0T+D7zNoe9eiTrPgDDIr8rZM6+vGjvPkfN8j6ycpw+fjqwv4FzYz/Cjlw9AAAAACDrBDU9yX8/AAAAAOYOtb4AAAAAJNXqveGdYz9D5i099bIYvwSNFL7PcIO+zmzWP24Iwr/Hoau+om2lP+u54bt208a//rkwv8DwOT+Bc2M/iswnvwAAAAAg6wQ1/yiAPwAAAADnoka/AAAAAHE0G7/EpNu/f9hTv1osQD+W95a/HprmvrTSjr81o48/Lbo+PSqK/7+Zjxq+ZO82P2BL5b1+OrC/6hCQvz0vsL8AAAAAIOsENeKQPz8AAAAA7DiHvwAAAAAwULS/HJMdwPqLTL/h45M/0wuiv0T3yL5EMYS/ett/PyZPMD1T4BDAcP4KvbLLMz+4kXW9fjqwv+oQkL8hclc+AAAAACDrBDUDuI4/AAAAAHEqjT8AAAAAsZEkve61hLzNg1c/dJKyPSmM6r5VWeE+JvLdvizbFT+WM0O/J1i0vuzBKz+j4Os+YijhvsDwOT+Bc2M/uio+vwAAAAAg6wQ1UVilPwAAAAC/xc8/AAAAAMiEnL5dZ62/KQiQP+R81L57FJe/uwT4PlwIhr1BeSw/e0MmvxETOr/FQDk/dgxzPxnc4D5+OrC/6hCQvx2VgL8AAAAAIOsENX7TuD4AAAAAXlzMPgAAAACAlpq/FYONvyLSnL4lmN+99NFyP4++Cz9/QGG9KZeOvwzLyj+dYCi+msq5vymYMj+0W1S9wPA5P+oQkL8M1oY/AAAAACDrBDUEWQDAAAAAAGKGiMAAAAAArMWGPp/Zvz625Yu/0oqRPjv9Dz7v2Pk+Bn2qvbB+ij8tuj49nzxMvi8wm78XDpu+nxBSQH46sL/qEJC/le3nvgAAAAAg6wQ1zcIRPgAAAAAm7Yo+AAAAAMJJUz/7W2o/+33VveN1er+QCLs+prUPPwbeib02/Y6/tjdkv5t8pj+kJYS+xcS+Pm+8xL7A8Dk/gXNjP7uANr8AAAAAIOsENYYMmz4AAAAA3CSfvwAAAADkegO+XLjWv080dr8UC5Y/FTmvv9hlAz/c11i+gDeVP5+SPj1DQgfANCsmv/4+r72fmms/fjqwv+oQkL8CcdS+AAAAACDrBDXFYCpAAAAAAFOVAkAAAAAAFPDdPXAMjb8wyYpAplOvP9UV6L9eQx0/ef+DPYyFjj9f3L1AAZfUv0DS+b/E28y9ZRfgv8DwOT/qEJC/DEYRPQAAAAAg6wQ1OIshQAAAAABTjuQ+AAAAAJraAb8BCVc/mWU3QFFHBr/NObm+JOACP7qdTr7obFG/Q9gFP2xtKz9WvGA/CKDiPlPV77x+OrC/gXNjP0tMob0AAAAAIOsENX9jkD8AAAAARrkqPwAAAABvALS9aaWRvsFPYj/9SUW/sK2avufx9z4LCIS9s5tHP0neRr+m8wm/pE7qPoDiNj8TyOK9fjqwv4FzYz9yzO6+AAAAACDrBDVo+Ds/AAAAAPneWj8AAAAADSWpvzotvL8U2Y8/MPnjvR+UN78W9fc+1RKEvaK3fz9+gz491vx9v0bc1T9zozI/OFQnvX46sL/qEJC/yMHkvwAAAAAg6wQ1oqKDPwAAAABQUGa/AAAAAC+5gb9+jxbAVigBvxwJlj8YowfAPLVOPqyusL60uY8/Lbo+PZGMCMA0Dq0+PqsyP8RnKb1+OrC/6hCQv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB9V4I/AAAAACxSeD8AAAAAj4HXvQAAAAC3e3o/AAAAAJU6iT8AAAAAS5GOvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGmB/PwAAAAAIpYY/AAAAAPRTrDwAAAAAeVuHPwAAAAB4TIA/AAAAAPoNfTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJsbfj8AAAAAsbZuPwAAAADhpvA8AAAAANF9fj8AAAAAVnaCPwAAAAAGpDG9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4/YM/AAAAAJLjgz8AAAAAW2kTPQAAAABacHs/AAAAACKZcT8AAAAABOz5PQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAE2eHPwAAAAA4Rnw/AAAAAJzOFrwAAAAA6UtuPwAAAACVXHs/AAAAAKutLj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDc3eD8AAAAAEB9tPwAAAAAG/CI8AAAAAPRHdD8AAAAAC+BuPwAAAACnLlK9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAag4E/AAAAADCbgD8AAAAAKC6BvQAAAACnMIc/AAAAAGOkfj8AAAAAYmXOvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy+aGPwAAAAAEw4c/AAAAAMnB4z0AAAAAObCHPwAAAABJi4A/AAAAAEmJrLsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8LdT8AAAAArZpzPwAAAADJoui7AAAAAAwcdz8AAAAAPRVtPwAAAAD2Y4a8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBd+nU/AAAAAK7Yfz8AAAAABbTHPQAAAAByJoU/AAAAAPUecj8AAAAARbuaPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAobVxPwAAAADNeHc/AAAAAAfuq70AAAAA6gtuPwAAAADE+IU/AAAAAHIssb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNIJez8AAAAAJMaFPwAAAAAvVi+9AAAAAJ91bj8AAAAAUyiIPwAAAACWRB09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpP30/AAAAAGjVhT8AAAAAIqqHOwAAAAA+Q34/AAAAAJGshD8AAAAALTdhvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXfeDPwAAAABrG3I/AAAAAGY0/j0AAAAAZul7PwAAAADovH0/AAAAAPmxZLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP3+ej8AAAAAEdVtPwAAAADyUAc9AAAAAC6bgz8AAAAA4pSDPwAAAACTVfE9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAO0XU/AAAAAD46iD8AAAAA2gqwvQAAAAAVo3c/AAAAANtrdT8AAAAAosZXvAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIJdcrI5o5CMAWyUTRgBjAF0lEdArOrB7qptJnV9lChoBkdAoREOc8TzumgHTegDaAhHQKztfkDIRyx1fZQoaAZHQKEn/Gff4ypoB03oA2gIR0Cs7ZdsabWmdX2UKGgGR0CHfxnU2DQJaAdNaAFoCEdArO3uM+/xlXV9lChoBkdAoPs519v0iGgHTegDaAhHQKzuNV4oqkN1fZQoaAZHQJl2/Pt2LYRoB03xAmgIR0Cs/m7jT8YRdX2UKGgGR0CSU0y3Td+HaAdNJgJoCEdArP69N34bj3V9lChoBkdAloIBMzuWr2gHTaICaAhHQK0FkQXhwVF1fZQoaAZHQJzMkz9CNS9oB01UA2gIR0CtBopEH+qBdX2UKGgGR0Cg/9LilzltaAdN6ANoCEdArQaR7VrhznV9lChoBkdAfnC2jwhGIGgHTT0BaAhHQK0IM2fkFOh1fZQoaAZHQKFNgm1IAfdoB03oA2gIR0CtCnP0h/y5dX2UKGgGR0Chh2RQaaTfaAdN6ANoCEdArR7BsImgJ3V9lChoBkdAoV4q48U21mgHTegDaAhHQK0hYOn2qT91fZQoaAZHQKBvJVS4vvloB03oA2gIR0CtIha4c3l0dX2UKGgGR0ChN5sxO+IuaAdN6ANoCEdArSIxDmbLEHV9lChoBkdAmbIrLt/nXGgHTfICaAhHQK0kO/Rmbsp1fZQoaAZHQKD6oRsdkrhoB03oA2gIR0CtJh+RYA80dX2UKGgGR0Cg/37VjI7vaAdN6ANoCEdArSYgd4mkWXV9lChoBkdAoSKabjLjgmgHTegDaAhHQK0oznIyTIN1fZQoaAZHQKFhYJw84gloB03oA2gIR0CtKOfi5uqFdX2UKGgGR0ChcyrN4Z/DaAdN6ANoCEdArSk+h/RVqHV9lChoBkdAoVJoj8k2P2gHTegDaAhHQK0phDzAeq91fZQoaAZHQInIrDfm9xpoB01+AWgIR0CtPD8Nx2jgdX2UKGgGR0Ccxt34bjtHaAdNRwNoCEdArT0AKrq+rXV9lChoBkdAmDE6iKziTGgHTc8CaAhHQK09KIKMNtt1fZQoaAZHQFTLvvBrN4ZoB0tFaAhHQK0/QshgVoJ1fZQoaAZHQJGCJR51Ng1oB034AWgIR0CtP0ryMDOkdX2UKGgGR0ChEzpS75EdaAdN6ANoCEdArUD21Bt1p3V9lChoBkdAizypLdvbXmgHTZkBaAhHQK1BCKTB68h1fZQoaAZHQKCHfJkoWpJoB03iA2gIR0CtQb2IXTEzdX2UKGgGR0Chva9OqNp/aAdN6ANoCEdArUOO05U96nV9lChoBkdAl4OVCkXUIGgHTakCaAhHQK1XcA0bcXZ1fZQoaAZHQKEUwOvMbFVoB03oA2gIR0CtWg1JlJ6IdX2UKGgGR0Ch31KOLiuMaAdN6ANoCEdArV1zeIl+mXV9lChoBkdAoNuxrFfiP2gHTegDaAhHQK1faE2YOUd1fZQoaAZHQFlpJhvze41oB0tTaAhHQK1gBHOKO1h1fZQoaAZHQJ9cst4A0bdoB02HA2gIR0CtYcJ4rz5HdX2UKGgGR0CBMIukk8ifaAdNCQFoCEdArWJGo99tuXV9lChoBkdAoa85T2nKn2gHTegDaAhHQK1kE5avA451fZQoaAZHQKF8hYRujypoB03oA2gIR0CtZCzPBzmwdX2UKGgGR0CXlVP/7zkIaAdNtQJoCEdArWR5ltj0+XV9lChoBkdAoZ85Huqm0mgHTegDaAhHQK1kghK15Sp1fZQoaAZHQHzbfeDWbw1oB0v0aAhHQK113wG4ZuR1fZQoaAZHQKG6ud9Ujs5oB03oA2gIR0Ctd3oi9qUNdX2UKGgGR0Cg1PEnLJS0aAdN6ANoCEdArXg2gxrSE3V9lChoBkdAlS4pkoWpImgHTWUCaAhHQK14uyIpH7R1fZQoaAZHQKHCidDpkf9oB03oA2gIR0Cteo2OIZZTdX2UKGgGR0ChaEWbwz+FaAdN6ANoCEdArXqWLLpzLnV9lChoBkdAobLeD+R5kmgHTegDaAhHQK19HktmL+B1fZQoaAZHQIn3nHktEohoB02XAWgIR0CtfZ+armyPdX2UKGgGR0ChXK1cdHUdaAdN6ANoCEdArX4o7zTWoXV9lChoBkdAoZZwx33Yc2gHTegDaAhHQK2ALGd7OVx1fZQoaAZHQH46/bwjMV1oB0v2aAhHQK2AeN/e+Eh1fZQoaAZHQHx4CnUDuBtoB0vdaAhHQK2VTfhMrVh1fZQoaAZHQIMIxffGdZtoB00fAWgIR0CtlxZAY51edX2UKGgGR0CRuXCZ4Oc2aAdNBAJoCEdArZgSo60Y0nV9lChoBkdALOjvuw5eaGgHSxNoCEdArZit9MK1HHV9lChoBkdAYlNW2gFotmgHS11oCEdArZuGQZGayHV9lChoBkdAoXnvv8ZUDWgHTegDaAhHQK2cChUzbex1fZQoaAZHQJpVac3EQ5FoB03nAmgIR0CtnEEOAiFCdX2UKGgGR0CVIjf4yoGZaAdNWQJoCEdArZx+mLtNSXV9lChoBkdAle0mMsH0LGgHTXwCaAhHQK2dmtWdVed1fZQoaAZHQFVQhhYvFm5oB0s9aAhHQK2d6zch1T11fZQoaAZHQKEPjtDUmUpoB03oA2gIR0Ctnt+qioKldX2UKGgGR0ChdlYvFm4BaAdN6ANoCEdAraCo7aIvanV9lChoBkdAodInUhFEzGgHTegDaAhHQK2gwI/JNj91fZQoaAZHQKGQpY+Sr5toB03oA2gIR0CtoQ2nTAnEdX2UKGgGR0ChTCp0fYBeaAdN6ANoCEdAraEW9SMtLHV9lChoBkdAJbJbD/EOy2gHSwtoCEdAraFsqc3ERHV9lChoBkdAeYWM+u/1x2gHS9BoCEdAraLoAIY3vXV9lChoBkdAYcG6T4cm0GgHS1VoCEdAraM7NB4UvnV9lChoBkdAobVT9KmKqGgHTegDaAhHQK20lVrhzeZ1fZQoaAZHQIu17ER8MNNoB02lAWgIR0CttqIHkcS5dX2UKGgGR0ChLHujRD1HaAdN6ANoCEdArbiuNkvsaHV9lChoBkdAleqK6STyKGgHTYECaAhHQK24/xhlUZN1fZQoaAZHQKFbw925hBtoB03oA2gIR0CtuQer+5vtdX2UKGgGR0ChQEnKfWc0aAdN6ANoCEdArblsFdLQHHV9lChoBkdAnStmac7Qs2gHTUEDaAhHQK29JAckt291fZQoaAZHQI1aIfMfRu1oB02+AWgIR0Ctvxtr0rbydX2UKGgGR0CYJSUjLSuyaAdNvwJoCEdArcACy4Wk8HV9lChoBkdAZOiyD7Ikq2gHS3NoCEdArcCr4593KXV9lChoBkdALxJ+UhV2imgHSxFoCEdArcE0CtA9m3V9lChoBkdAgeYNvwVj7WgHTRkBaAhHQK3BU1y/9Hd1fZQoaAZHQFRDll9Sde9oB0tKaAhHQK3BYkcjqwB1fZQoaAZHQDy5m5Dqnm9oB0s2aAhHQK3ROg7HQyB1fZQoaAZHQJHTDKyOaORoB00UAmgIR0Ct0zPk7wKCdX2UKGgGR0B6Sle4TbnHaAdL1mgIR0Ct1MkK3NLUdX2UKGgGR0BnJ6hJyyUtaAdLdGgIR0Ct1sUxM36zdX2UKGgGR0CUVpstCiRGaAdNTAJoCEdArdbvZRKpUHV9lChoBkdAoVLS/qPfbmgHTegDaAhHQK3Yt6fJ3gV1fZQoaAZHQKH2ZF3pwCNoB03oA2gIR0Ct2QfiYLLIdX2UKGgGR0ChLnCwr1/UaAdN6ANoCEdArdn5JCjUNXV9lChoBkdAocDe69TP0WgHTegDaAhHQK3b12/zreJ1fZQoaAZHQKHGkJBw++xoB03oA2gIR0Ct3CWBSUC8dX2UKGgGR0ChCTfT1CgLaAdN6ANoCEdArdyHxvvSdHV9lChoBkdAoUKNHOKO1mgHTegDaAhHQK3eBHwPRRd1fZQoaAZHQG6ADvmYBvJoB0uLaAhHQK3eQRwIdEN1fZQoaAZHQHfryZOSGJxoB0vRaAhHQK3feeT3Zf51fZQoaAZHQDDoC7sfJV9oB0sQaAhHQK3f+7GNrCZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4900, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dbc8fe5df0010d563927cf6e705a2c6a79a1ecb060d497631a78b9cb17fc081
|
3 |
+
size 1794911
|
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbfd2dd2a70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbfd2dd2b00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbfd2dd2b90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbfd2dd2c20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbfd2dd2cb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbfd2dd2d40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbfd2dd2dd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbfd2dd2e60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbfd2dd2ef0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbfd2dd2f80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbfd2dd9050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbfd2e22780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
28 |
+
"net_arch": [
|
29 |
+
{
|
30 |
+
"pi": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"vf": [
|
35 |
+
256,
|
36 |
+
256
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"observation_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
44 |
+
"dtype": "float32",
|
45 |
+
"_shape": [
|
46 |
+
22
|
47 |
+
],
|
48 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
|
49 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
|
50 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
51 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
52 |
+
"_np_random": null
|
53 |
+
},
|
54 |
+
"action_space": {
|
55 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
56 |
+
":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
57 |
+
"dtype": "float32",
|
58 |
+
"_shape": [
|
59 |
+
6
|
60 |
+
],
|
61 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
62 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
63 |
+
"bounded_below": "[ True True True True True True]",
|
64 |
+
"bounded_above": "[ True True True True True True]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"n_envs": 16,
|
68 |
+
"num_timesteps": 2007040,
|
69 |
+
"_total_timesteps": 2000000,
|
70 |
+
"_num_timesteps_at_start": 0,
|
71 |
+
"seed": null,
|
72 |
+
"action_noise": null,
|
73 |
+
"start_time": 1658043051.6085303,
|
74 |
+
"learning_rate": 3e-05,
|
75 |
+
"tensorboard_log": "./tensorboard",
|
76 |
+
"lr_schedule": {
|
77 |
+
":type:": "<class 'function'>",
|
78 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
79 |
+
},
|
80 |
+
"_last_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAy+RcvwAAAAAg6wQ1oJfaPgAAAAAuomC/AAAAAMQZQL/61/m/Guwwv5c6iz/v6PG/7rC6Pcbf7b58AIA/vXYhPY9V4L+DQK6+W+I3P//BAr5+OrC/6hCQvzXgHrwAAAAAIOsENQy4TD8AAAAAcQcRPwAAAACGJ9W+t4bpvsz9iT8SSHK9brGLvv0T+D7zNoe9eiTrPgDDIr8rZM6+vGjvPkfN8j6ycpw+fjqwv4FzYz/Cjlw9AAAAACDrBDU9yX8/AAAAAOYOtb4AAAAAJNXqveGdYz9D5i099bIYvwSNFL7PcIO+zmzWP24Iwr/Hoau+om2lP+u54bt208a//rkwv8DwOT+Bc2M/iswnvwAAAAAg6wQ1/yiAPwAAAADnoka/AAAAAHE0G7/EpNu/f9hTv1osQD+W95a/HprmvrTSjr81o48/Lbo+PSqK/7+Zjxq+ZO82P2BL5b1+OrC/6hCQvz0vsL8AAAAAIOsENeKQPz8AAAAA7DiHvwAAAAAwULS/HJMdwPqLTL/h45M/0wuiv0T3yL5EMYS/ett/PyZPMD1T4BDAcP4KvbLLMz+4kXW9fjqwv+oQkL8hclc+AAAAACDrBDUDuI4/AAAAAHEqjT8AAAAAsZEkve61hLzNg1c/dJKyPSmM6r5VWeE+JvLdvizbFT+WM0O/J1i0vuzBKz+j4Os+YijhvsDwOT+Bc2M/uio+vwAAAAAg6wQ1UVilPwAAAAC/xc8/AAAAAMiEnL5dZ62/KQiQP+R81L57FJe/uwT4PlwIhr1BeSw/e0MmvxETOr/FQDk/dgxzPxnc4D5+OrC/6hCQvx2VgL8AAAAAIOsENX7TuD4AAAAAXlzMPgAAAACAlpq/FYONvyLSnL4lmN+99NFyP4++Cz9/QGG9KZeOvwzLyj+dYCi+msq5vymYMj+0W1S9wPA5P+oQkL8M1oY/AAAAACDrBDUEWQDAAAAAAGKGiMAAAAAArMWGPp/Zvz625Yu/0oqRPjv9Dz7v2Pk+Bn2qvbB+ij8tuj49nzxMvi8wm78XDpu+nxBSQH46sL/qEJC/le3nvgAAAAAg6wQ1zcIRPgAAAAAm7Yo+AAAAAMJJUz/7W2o/+33VveN1er+QCLs+prUPPwbeib02/Y6/tjdkv5t8pj+kJYS+xcS+Pm+8xL7A8Dk/gXNjP7uANr8AAAAAIOsENYYMmz4AAAAA3CSfvwAAAADkegO+XLjWv080dr8UC5Y/FTmvv9hlAz/c11i+gDeVP5+SPj1DQgfANCsmv/4+r72fmms/fjqwv+oQkL8CcdS+AAAAACDrBDXFYCpAAAAAAFOVAkAAAAAAFPDdPXAMjb8wyYpAplOvP9UV6L9eQx0/ef+DPYyFjj9f3L1AAZfUv0DS+b/E28y9ZRfgv8DwOT/qEJC/DEYRPQAAAAAg6wQ1OIshQAAAAABTjuQ+AAAAAJraAb8BCVc/mWU3QFFHBr/NObm+JOACP7qdTr7obFG/Q9gFP2xtKz9WvGA/CKDiPlPV77x+OrC/gXNjP0tMob0AAAAAIOsENX9jkD8AAAAARrkqPwAAAABvALS9aaWRvsFPYj/9SUW/sK2avufx9z4LCIS9s5tHP0neRr+m8wm/pE7qPoDiNj8TyOK9fjqwv4FzYz9yzO6+AAAAACDrBDVo+Ds/AAAAAPneWj8AAAAADSWpvzotvL8U2Y8/MPnjvR+UN78W9fc+1RKEvaK3fz9+gz491vx9v0bc1T9zozI/OFQnvX46sL/qEJC/yMHkvwAAAAAg6wQ1oqKDPwAAAABQUGa/AAAAAC+5gb9+jxbAVigBvxwJlj8YowfAPLVOPqyusL60uY8/Lbo+PZGMCMA0Dq0+PqsyP8RnKb1+OrC/6hCQv5R0lGIu"
|
83 |
+
},
|
84 |
+
"_last_episode_starts": {
|
85 |
+
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
87 |
+
},
|
88 |
+
"_last_original_obs": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB9V4I/AAAAACxSeD8AAAAAj4HXvQAAAAC3e3o/AAAAAJU6iT8AAAAAS5GOvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGmB/PwAAAAAIpYY/AAAAAPRTrDwAAAAAeVuHPwAAAAB4TIA/AAAAAPoNfTwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJsbfj8AAAAAsbZuPwAAAADhpvA8AAAAANF9fj8AAAAAVnaCPwAAAAAGpDG9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4/YM/AAAAAJLjgz8AAAAAW2kTPQAAAABacHs/AAAAACKZcT8AAAAABOz5PQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAE2eHPwAAAAA4Rnw/AAAAAJzOFrwAAAAA6UtuPwAAAACVXHs/AAAAAKutLj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDc3eD8AAAAAEB9tPwAAAAAG/CI8AAAAAPRHdD8AAAAAC+BuPwAAAACnLlK9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAag4E/AAAAADCbgD8AAAAAKC6BvQAAAACnMIc/AAAAAGOkfj8AAAAAYmXOvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAy+aGPwAAAAAEw4c/AAAAAMnB4z0AAAAAObCHPwAAAABJi4A/AAAAAEmJrLsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB8LdT8AAAAArZpzPwAAAADJoui7AAAAAAwcdz8AAAAAPRVtPwAAAAD2Y4a8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBd+nU/AAAAAK7Yfz8AAAAABbTHPQAAAAByJoU/AAAAAPUecj8AAAAARbuaPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAobVxPwAAAADNeHc/AAAAAAfuq70AAAAA6gtuPwAAAADE+IU/AAAAAHIssb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNIJez8AAAAAJMaFPwAAAAAvVi+9AAAAAJ91bj8AAAAAUyiIPwAAAACWRB09AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpP30/AAAAAGjVhT8AAAAAIqqHOwAAAAA+Q34/AAAAAJGshD8AAAAALTdhvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXfeDPwAAAABrG3I/AAAAAGY0/j0AAAAAZul7PwAAAADovH0/AAAAAPmxZLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP3+ej8AAAAAEdVtPwAAAADyUAc9AAAAAC6bgz8AAAAA4pSDPwAAAACTVfE9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAO0XU/AAAAAD46iD8AAAAA2gqwvQAAAAAVo3c/AAAAANtrdT8AAAAAosZXvAAAAAAAAAAAAAAAAJR0lGIu"
|
91 |
+
},
|
92 |
+
"_episode_num": 0,
|
93 |
+
"use_sde": true,
|
94 |
+
"sde_sample_freq": 4,
|
95 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
96 |
+
"ep_info_buffer": {
|
97 |
+
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gASVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIJdcrI5o5CMAWyUTRgBjAF0lEdArOrB7qptJnV9lChoBkdAoREOc8TzumgHTegDaAhHQKztfkDIRyx1fZQoaAZHQKEn/Gff4ypoB03oA2gIR0Cs7ZdsabWmdX2UKGgGR0CHfxnU2DQJaAdNaAFoCEdArO3uM+/xlXV9lChoBkdAoPs519v0iGgHTegDaAhHQKzuNV4oqkN1fZQoaAZHQJl2/Pt2LYRoB03xAmgIR0Cs/m7jT8YRdX2UKGgGR0CSU0y3Td+HaAdNJgJoCEdArP69N34bj3V9lChoBkdAloIBMzuWr2gHTaICaAhHQK0FkQXhwVF1fZQoaAZHQJzMkz9CNS9oB01UA2gIR0CtBopEH+qBdX2UKGgGR0Cg/9LilzltaAdN6ANoCEdArQaR7VrhznV9lChoBkdAfnC2jwhGIGgHTT0BaAhHQK0IM2fkFOh1fZQoaAZHQKFNgm1IAfdoB03oA2gIR0CtCnP0h/y5dX2UKGgGR0Chh2RQaaTfaAdN6ANoCEdArR7BsImgJ3V9lChoBkdAoV4q48U21mgHTegDaAhHQK0hYOn2qT91fZQoaAZHQKBvJVS4vvloB03oA2gIR0CtIha4c3l0dX2UKGgGR0ChN5sxO+IuaAdN6ANoCEdArSIxDmbLEHV9lChoBkdAmbIrLt/nXGgHTfICaAhHQK0kO/Rmbsp1fZQoaAZHQKD6oRsdkrhoB03oA2gIR0CtJh+RYA80dX2UKGgGR0Cg/37VjI7vaAdN6ANoCEdArSYgd4mkWXV9lChoBkdAoSKabjLjgmgHTegDaAhHQK0oznIyTIN1fZQoaAZHQKFhYJw84gloB03oA2gIR0CtKOfi5uqFdX2UKGgGR0ChcyrN4Z/DaAdN6ANoCEdArSk+h/RVqHV9lChoBkdAoVJoj8k2P2gHTegDaAhHQK0phDzAeq91fZQoaAZHQInIrDfm9xpoB01+AWgIR0CtPD8Nx2jgdX2UKGgGR0Ccxt34bjtHaAdNRwNoCEdArT0AKrq+rXV9lChoBkdAmDE6iKziTGgHTc8CaAhHQK09KIKMNtt1fZQoaAZHQFTLvvBrN4ZoB0tFaAhHQK0/QshgVoJ1fZQoaAZHQJGCJR51Ng1oB034AWgIR0CtP0ryMDOkdX2UKGgGR0ChEzpS75EdaAdN6ANoCEdArUD21Bt1p3V9lChoBkdAizypLdvbXmgHTZkBaAhHQK1BCKTB68h1fZQoaAZHQKCHfJkoWpJoB03iA2gIR0CtQb2IXTEzdX2UKGgGR0Chva9OqNp/aAdN6ANoCEdArUOO05U96nV9lChoBkdAl4OVCkXUIGgHTakCaAhHQK1XcA0bcXZ1fZQoaAZHQKEUwOvMbFVoB03oA2gIR0CtWg1JlJ6IdX2UKGgGR0Ch31KOLiuMaAdN6ANoCEdArV1zeIl+mXV9lChoBkdAoNuxrFfiP2gHTegDaAhHQK1faE2YOUd1fZQoaAZHQFlpJhvze41oB0tTaAhHQK1gBHOKO1h1fZQoaAZHQJ9cst4A0bdoB02HA2gIR0CtYcJ4rz5HdX2UKGgGR0CBMIukk8ifaAdNCQFoCEdArWJGo99tuXV9lChoBkdAoa85T2nKn2gHTegDaAhHQK1kE5avA451fZQoaAZHQKF8hYRujypoB03oA2gIR0CtZCzPBzmwdX2UKGgGR0CXlVP/7zkIaAdNtQJoCEdArWR5ltj0+XV9lChoBkdAoZ85Huqm0mgHTegDaAhHQK1kghK15Sp1fZQoaAZHQHzbfeDWbw1oB0v0aAhHQK113wG4ZuR1fZQoaAZHQKG6ud9Ujs5oB03oA2gIR0Ctd3oi9qUNdX2UKGgGR0Cg1PEnLJS0aAdN6ANoCEdArXg2gxrSE3V9lChoBkdAlS4pkoWpImgHTWUCaAhHQK14uyIpH7R1fZQoaAZHQKHCidDpkf9oB03oA2gIR0Cteo2OIZZTdX2UKGgGR0ChaEWbwz+FaAdN6ANoCEdArXqWLLpzLnV9lChoBkdAobLeD+R5kmgHTegDaAhHQK19HktmL+B1fZQoaAZHQIn3nHktEohoB02XAWgIR0CtfZ+armyPdX2UKGgGR0ChXK1cdHUdaAdN6ANoCEdArX4o7zTWoXV9lChoBkdAoZZwx33Yc2gHTegDaAhHQK2ALGd7OVx1fZQoaAZHQH46/bwjMV1oB0v2aAhHQK2AeN/e+Eh1fZQoaAZHQHx4CnUDuBtoB0vdaAhHQK2VTfhMrVh1fZQoaAZHQIMIxffGdZtoB00fAWgIR0CtlxZAY51edX2UKGgGR0CRuXCZ4Oc2aAdNBAJoCEdArZgSo60Y0nV9lChoBkdALOjvuw5eaGgHSxNoCEdArZit9MK1HHV9lChoBkdAYlNW2gFotmgHS11oCEdArZuGQZGayHV9lChoBkdAoXnvv8ZUDWgHTegDaAhHQK2cChUzbex1fZQoaAZHQJpVac3EQ5FoB03nAmgIR0CtnEEOAiFCdX2UKGgGR0CVIjf4yoGZaAdNWQJoCEdArZx+mLtNSXV9lChoBkdAle0mMsH0LGgHTXwCaAhHQK2dmtWdVed1fZQoaAZHQFVQhhYvFm5oB0s9aAhHQK2d6zch1T11fZQoaAZHQKEPjtDUmUpoB03oA2gIR0Ctnt+qioKldX2UKGgGR0ChdlYvFm4BaAdN6ANoCEdAraCo7aIvanV9lChoBkdAodInUhFEzGgHTegDaAhHQK2gwI/JNj91fZQoaAZHQKGQpY+Sr5toB03oA2gIR0CtoQ2nTAnEdX2UKGgGR0ChTCp0fYBeaAdN6ANoCEdAraEW9SMtLHV9lChoBkdAJbJbD/EOy2gHSwtoCEdAraFsqc3ERHV9lChoBkdAeYWM+u/1x2gHS9BoCEdAraLoAIY3vXV9lChoBkdAYcG6T4cm0GgHS1VoCEdAraM7NB4UvnV9lChoBkdAobVT9KmKqGgHTegDaAhHQK20lVrhzeZ1fZQoaAZHQIu17ER8MNNoB02lAWgIR0CttqIHkcS5dX2UKGgGR0ChLHujRD1HaAdN6ANoCEdArbiuNkvsaHV9lChoBkdAleqK6STyKGgHTYECaAhHQK24/xhlUZN1fZQoaAZHQKFbw925hBtoB03oA2gIR0CtuQer+5vtdX2UKGgGR0ChQEnKfWc0aAdN6ANoCEdArblsFdLQHHV9lChoBkdAnStmac7Qs2gHTUEDaAhHQK29JAckt291fZQoaAZHQI1aIfMfRu1oB02+AWgIR0Ctvxtr0rbydX2UKGgGR0CYJSUjLSuyaAdNvwJoCEdArcACy4Wk8HV9lChoBkdAZOiyD7Ikq2gHS3NoCEdArcCr4593KXV9lChoBkdALxJ+UhV2imgHSxFoCEdArcE0CtA9m3V9lChoBkdAgeYNvwVj7WgHTRkBaAhHQK3BU1y/9Hd1fZQoaAZHQFRDll9Sde9oB0tKaAhHQK3BYkcjqwB1fZQoaAZHQDy5m5Dqnm9oB0s2aAhHQK3ROg7HQyB1fZQoaAZHQJHTDKyOaORoB00UAmgIR0Ct0zPk7wKCdX2UKGgGR0B6Sle4TbnHaAdL1mgIR0Ct1MkK3NLUdX2UKGgGR0BnJ6hJyyUtaAdLdGgIR0Ct1sUxM36zdX2UKGgGR0CUVpstCiRGaAdNTAJoCEdArdbvZRKpUHV9lChoBkdAoVLS/qPfbmgHTegDaAhHQK3Yt6fJ3gV1fZQoaAZHQKH2ZF3pwCNoB03oA2gIR0Ct2QfiYLLIdX2UKGgGR0ChLnCwr1/UaAdN6ANoCEdArdn5JCjUNXV9lChoBkdAocDe69TP0WgHTegDaAhHQK3b12/zreJ1fZQoaAZHQKHGkJBw++xoB03oA2gIR0Ct3CWBSUC8dX2UKGgGR0ChCTfT1CgLaAdN6ANoCEdArdyHxvvSdHV9lChoBkdAoUKNHOKO1mgHTegDaAhHQK3eBHwPRRd1fZQoaAZHQG6ADvmYBvJoB0uLaAhHQK3eQRwIdEN1fZQoaAZHQHfryZOSGJxoB0vRaAhHQK3feeT3Zf51fZQoaAZHQDDoC7sfJV9oB0sQaAhHQK3f+7GNrCZ1ZS4="
|
99 |
+
},
|
100 |
+
"ep_success_buffer": {
|
101 |
+
":type:": "<class 'collections.deque'>",
|
102 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
+
},
|
104 |
+
"_n_updates": 4900,
|
105 |
+
"n_steps": 512,
|
106 |
+
"gamma": 0.99,
|
107 |
+
"gae_lambda": 0.92,
|
108 |
+
"ent_coef": 0.0,
|
109 |
+
"vf_coef": 0.5,
|
110 |
+
"max_grad_norm": 0.5,
|
111 |
+
"batch_size": 128,
|
112 |
+
"n_epochs": 20,
|
113 |
+
"clip_range": {
|
114 |
+
":type:": "<class 'function'>",
|
115 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
116 |
+
},
|
117 |
+
"clip_range_vf": null,
|
118 |
+
"normalize_advantage": true,
|
119 |
+
"target_kl": null
|
120 |
+
}
|
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c92bf07aaa596631ee69a0d11431b288c348bd54147eed8da71975888629b533
|
3 |
+
size 1183984
|
ppo-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9174ae1d915128675f00fadba5c8e87a7d3508bab7249943076c3d39e2d579a1
|
3 |
+
size 591102
|
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a53d88e26e4928a35d9af462500dbdf347762fa6b975d0d3bd66bddd1df432cb
|
3 |
+
size 1092053
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2352.1808405088727, "std_reward": 12.200807908169239, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-17T08:36:23.157809"}
|
vec_normalize.pkl
ADDED
Binary file (3.6 kB). View file
|
|