ppo-LunarLander-v2 / config.json
wolfrage89's picture
Upload PPO LunarLander-v2 trained agent
a885556 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e2299059f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e2299059fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e229905a050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e229905a0e0>", "_build": "<function ActorCriticPolicy._build at 0x7e229905a170>", "forward": "<function ActorCriticPolicy.forward at 0x7e229905a200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e229905a290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e229905a320>", "_predict": "<function ActorCriticPolicy._predict at 0x7e229905a3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e229905a440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e229905a4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e229905a560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e22991beec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731686841980671131, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECciT1yF7M/b0gUP6+GOL6OACk8xyMRPgAAAAAAAAAAplMcPs17hT+PMI4+X4Alv7bizD0MJBm8AAAAAAAAAAAa8VM+N5IJP2eGqj0xxa6+ptqtPYULQDwAAAAAAAAAAGZuv7x7lPQ3Qk80NBODgS/+ae04fsqbswAAgD8AAIA/s+ugPWUibD46Zpw9ihqVvmEaWzwGO3w8AAAAAAAAAACtUYo+iC6yvOrfDDs0PVK5Wr8ivqLvLLoAAIA/AACAP/PR3r1u9+E9xgsgPloPLb46BqS8k7npuwAAAAAAAAAAcykTvo4Khj4zt+E9Pv2Rvnvrm70CfDg8AAAAAAAAAABAPza+1NWGvGVV07sSdEC6b9vuPXT/GTsAAIA/AACAP4B2XT608XE+HkhRPYTdc76IRyM9l/HKOQAAAAAAAAAA019cPnS1prxyjoE73yHSuZRWGL4zz5a6AACAPwAAgD8DlVe+V1mqP72V1755HRG/pO39vVUZ270AAAAAAAAAAM3QdT4p5TA9/iL7uS13hLh0RM4+q995twAAAAAAAAAAGvCZvQNFjD8DaYi+eUANv+NVhb1pSgK9AAAAAAAAAACg40E+2+urvEFfNDzMD7W6RqEbvif8jbsAAIA/AACAP83o472a2rQ/aNkAv5/Mhr6Ynpq9tnMnvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMUZCfHxSaMAWyUTegDjAF0lEdAosHc5OrQxHV9lChoBkdAcN2xqwhW52gHS+BoCEdAosHn2VVxTHV9lChoBkdAcKzVKwpvxmgHS99oCEdAovDdFKCg9XV9lChoBkdAcUeN4qwyI2gHTSEBaAhHQKLx38CxNZh1fZQoaAZHQHCLDSXt0FNoB0vCaAhHQKLyq0UoKD11fZQoaAZHQGzwYoy9EkVoB0v5aAhHQKLzK6QNkOJ1fZQoaAZHQHCqYvnKW9loB0vpaAhHQKLzn0btJFt1fZQoaAZHQHLnnIEKVptoB00nAWgIR0Ci8/abF0gbdX2UKGgGR0BxXsF2V3UyaAdL+mgIR0Ci9Htuk1uSdX2UKGgGR0Bsy6OtGNJfaAdNJgFoCEdAovVoYWLxZ3V9lChoBkdAb5YCwr1/UmgHS+loCEdAovVvTZxrBXV9lChoBkdAYbjPdEb5umgHTegDaAhHQKL1iyKvV3F1fZQoaAZHQGKM6LOzIFNoB03oA2gIR0Ci9fCONo8IdX2UKGgGR0BrXsIC2c8UaAdN4QFoCEdAovZjtqpLmXV9lChoBkdAcQDTVUdaMmgHS/JoCEdAovbiVpsXSHV9lChoBkdAbhJsgMc6vWgHS91oCEdAovdWUSqU/3V9lChoBkdAO737P6be/GgHS81oCEdAoveRPdl/Y3V9lChoBkdARl/nr6ciGGgHS8doCEdAovgCe7L+xXV9lChoBkdAcbgIoVmBfGgHS9toCEdAovjlLWZqmHV9lChoBkdAcaaFw1ivxGgHS+doCEdAovnb1f3N93V9lChoBkdAcSwxKQJXyWgHS9JoCEdAovpiCUX533V9lChoBkdAWe3Eit7rs2gHTegDaAhHQKL6tRdhRZV1fZQoaAZHQHDhoK2KEWZoB0vhaAhHQKL6uZ3LV4J1fZQoaAZHQHAKUqQRwqBoB00DAWgIR0Ci+4mCAc1gdX2UKGgGR0ByMF1s+FDfaAdNFAFoCEdAovuNcB2fTXV9lChoBkdAXR8CSzPa+WgHTegDaAhHQKL774SHuZ11fZQoaAZHQHBLpIH1OCZoB01dA2gIR0Ci/Cs6zVtodX2UKGgGR0BwZS3lS0jUaAdNUwNoCEdAovxZtcfNinV9lChoBkdAcW9Dxsl9jWgHTSYBaAhHQKL8uNaQmu11fZQoaAZHQHIRROk+HJtoB0v8aAhHQKL9ZVghKUV1fZQoaAZHQGz2t6ol2NhoB014AWgIR0Ci/aHmig01dX2UKGgGR0Bv4IDV6NVBaAdNTQFoCEdAov2mgzxgA3V9lChoBkdAb3JAOavzOGgHTXMDaAhHQKL+QiLVFx51fZQoaAZHQHDhdJnQID5oB0v/aAhHQKL+WgxJul51fZQoaAZHQGqUr8aXKKZoB00FAWgIR0Ci/qechC+ldX2UKGgGR0BvaRlxwQ18aAdL4GgIR0Ci/uzE74i5dX2UKGgGR0ByRtsKsuFpaAdNGQFoCEdAov71XvH933V9lChoBkdAcnCO/+Kjz2gHTUEBaAhHQKL/ACL/CIl1fZQoaAZHQG6a2t+1Bt1oB02jAWgIR0Ci/wtnwob5dX2UKGgGR0Bxkpepn6EbaAdL92gIR0Ci/zOGCZnddX2UKGgGR0BxWEzwc5sCaAdL+mgIR0Ci/7rbg0j1dX2UKGgGR0BvqDqrzXjEaAdN+wFoCEdAowBy0WuX/3V9lChoBkdAcH3EaVD8cmgHS91oCEdAowB/HPu5SXV9lChoBkdAa7cOvt+kQGgHTUIBaAhHQKMA9vGZNPB1fZQoaAZHQHB7cJdB0IVoB0v3aAhHQKMBHUqhDgJ1fZQoaAZHQHF+ZuZThpBoB00DAWgIR0CjAUy3LFGYdX2UKGgGR0ByCFbGFSKnaAdLzGgIR0CjAcaM72csdX2UKGgGR0BxmImzByjpaAdL0mgIR0CjAdU6HTJAdX2UKGgGR0BpsantOVPfaAdNaQFoCEdAowHlCNS62HV9lChoBkdAcK74pc5bQmgHS+xoCEdAowHxeHBUJnV9lChoBkdAbvQK+i8Fp2gHS+loCEdAowI41xbSqnV9lChoBkdAckC7NjbzsmgHTQMBaAhHQKMCnpWV/tp1fZQoaAZHQHCfp7kXDWNoB0vbaAhHQKMC1Q6ZH/d1fZQoaAZHQHFPf7vXsgNoB01sAWgIR0CjA1QuuievdX2UKGgGR0Bw6VYbKifyaAdNNQFoCEdAowOIKF7D23V9lChoBkdAcgDDaoMrmWgHTQoBaAhHQKMEZOJtSAJ1fZQoaAZHQHFEXfAKv3doB000AWgIR0CjBRXRw6yTdX2UKGgGR0Bx4bbypaRqaAdNGQFoCEdAowVhfOUt7XV9lChoBkdAcDH4ffXPJWgHS+toCEdAowWX3+MqBnV9lChoBkdAcx/NFjNILGgHS/FoCEdAowWkVgx8D3V9lChoBkdAbicb70nPV2gHS9toCEdAowWt0A93bHV9lChoBkdAb6TMCcPOIWgHTQsBaAhHQKMF7YuCf6J1fZQoaAZHQHEnRSDRMOBoB00OAWgIR0CjBggaWHDadX2UKGgGR0ByfoH7gsK9aAdL2mgIR0CjBl2APNFCdX2UKGgGR0BuNYS6DoQnaAdL2GgIR0CjBxhqj8DTdX2UKGgGR0BxESqdYnv2aAdNGwFoCEdAowcn1OCXhXV9lChoBkdAb9YJ7b+LnGgHTWcCaAhHQKMHgrQw9JV1fZQoaAZHQHKt6Tjebd9oB01MAWgIR0CjCKPmozeodX2UKGgGR0ByDc0BOpKjaAdNFgFoCEdAowjZqmCROnV9lChoBkdAc7dPkaMrE2gHS+BoCEdAowjimuTzNHV9lChoBkdAcAf7p3X7L2gHS/VoCEdAowmZSaVlgHV9lChoBkdAbuMtz0Yj0WgHTR4BaAhHQKMJuJl8PWh1fZQoaAZHQGv4B+nZTQ5oB00AAWgIR0CjCcG96C17dX2UKGgGR0BwzjxFy7wsaAdL/2gIR0CjCotorWiDdX2UKGgGR0BwFsH7gsK9aAdNSAFoCEdAowr4qPOpsHV9lChoBkdAbh7UH6dlNGgHS+5oCEdAowse3F1jiHV9lChoBkdAcRN9jPOY6WgHS9hoCEdAowsnkT6BRXV9lChoBkdAYWe4o7V8TmgHTegDaAhHQKMLS8Fpwjt1fZQoaAZHQHDFPRJEpiJoB00PAWgIR0CjC5E0iyIIdX2UKGgGR0ByrDNKRMewaAdL2WgIR0CjDJLzf779dX2UKGgGR0BvP3UWl/H6aAdL9mgIR0CjDRyxzJZGdX2UKGgGR0BxWad07r9maAdL0GgIR0CjDUT/ACXAdX2UKGgGR0Bpm28brC3xaAdN1wFoCEdAow3U1dgOSXV9lChoBkdAcEXCQ9zOo2gHTQYBaAhHQKMODqcmShd1fZQoaAZHQHJMdwWFev9oB0vcaAhHQKMPC6fapP11fZQoaAZHQG8GkH2RJVdoB0viaAhHQKMPJNs3yZt1fZQoaAZHQHDvWnwXqJNoB0vjaAhHQKMPbIWgvlF1fZQoaAZHQHIodwiqyW1oB00XAWgIR0CjD5wSamXPdX2UKGgGR0ByRc5xR2r5aAdNBwFoCEdAow/GQr+YMXV9lChoBkdAcAyevIOpbWgHS8RoCEdAoxBwX9BKMHV9lChoBkdAXQJSl3yI6GgHTegDaAhHQKMSSAwPAfx1fZQoaAZHQHDZRsdkrgBoB0v8aAhHQKMS1Yr8R+V1fZQoaAZHQGLIEOZssQNoB03oA2gIR0CjEtv5HmRvdX2UKGgGR0BwxfEKmbb2aAdNCwFoCEdAoxL6rtE5Q3V9lChoBkdAcOQusLfDUGgHS+poCEdAoxN0bDMvAXV9lChoBkdAbNXfIjnmrGgHTSUBaAhHQKMUi9HMEA51fZQoaAZHQHKC3MMZxaRoB0vKaAhHQKMUkWhysCF1fZQoaAZHQG434GdI5HVoB0vtaAhHQKMU5eizsyB1fZQoaAZHQHDIVXRw6yVoB00CAWgIR0CjFPpH7P6bdX2UKGgGR0BxOmweNkvsaAdL9GgIR0CjFSVD8cdYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}