|
from typing import Any |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
|
|
def extract_assistant_response_simple(response_text): |
|
|
|
parts = response_text.split("<|start_header_id|>assistant<|end_header_id|>")[ |
|
1 |
|
].split("<|eot_id|>")[0] |
|
return parts.strip() |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
torch_dtype="auto", |
|
) |
|
self.model = model.to_bettertransformer() |
|
|
|
def __call__(self, data: Any): |
|
text = data.pop("inputs", data) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": text}, |
|
] |
|
|
|
inputs = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): |
|
outputs = self.model.generate(**inputs) |
|
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|