--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: ad641a5b-ef11-4278-80e4-9119f53c47f4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 batch_size: 8 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - 11bfaf21b106be7f_train_data.json ds_type: json format: custom path: /workspace/input_data/11bfaf21b106be7f_train_data.json type: field_input: project_and_commit_id field_instruction: source field_output: target format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' early_stopping_patience: 3 eval_steps: 50 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/ad641a5b-ef11-4278-80e4-9119f53c47f4 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lora_alpha: 256 lora_dropout: 0.1 lora_r: 128 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 50 sequence_len: 2048 tokenizer_type: LlamaTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# ad641a5b-ef11-4278-80e4-9119f53c47f4 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 589 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | 2.0060 | | 1.2664 | 0.0530 | 50 | 1.2713 | | 0.9659 | 0.1060 | 100 | 0.9642 | | 0.7596 | 0.1591 | 150 | 0.8311 | | 0.7092 | 0.2121 | 200 | 0.7583 | | 0.6691 | 0.2651 | 250 | 0.6944 | | 0.65 | 0.3181 | 300 | 0.6577 | | 0.6149 | 0.3712 | 350 | 0.6268 | | 0.5929 | 0.4242 | 400 | 0.5945 | | 0.5319 | 0.4772 | 450 | 0.5820 | | 0.5136 | 0.5302 | 500 | 0.5576 | | 0.5258 | 0.5832 | 550 | 0.5367 | | 0.4476 | 0.6363 | 600 | 0.5141 | | 0.5018 | 0.6893 | 650 | 0.4943 | | 0.4851 | 0.7423 | 700 | 0.4861 | | 0.41 | 0.7953 | 750 | 0.4693 | | 0.4625 | 0.8484 | 800 | 0.4552 | | 0.4909 | 0.9014 | 850 | 0.4421 | | 0.3885 | 0.9544 | 900 | 0.4196 | | 0.3408 | 1.0074 | 950 | 0.4111 | | 0.2804 | 1.0604 | 1000 | 0.4020 | | 0.3503 | 1.1135 | 1050 | 0.3875 | | 0.291 | 1.1665 | 1100 | 0.3958 | | 0.3025 | 1.2195 | 1150 | 0.3849 | | 0.2749 | 1.2725 | 1200 | 0.3729 | | 0.3222 | 1.3256 | 1250 | 0.3631 | | 0.2895 | 1.3786 | 1300 | 0.3570 | | 0.2994 | 1.4316 | 1350 | 0.3470 | | 0.3055 | 1.4846 | 1400 | 0.3431 | | 0.2252 | 1.5376 | 1450 | 0.3351 | | 0.2816 | 1.5907 | 1500 | 0.3214 | | 0.3065 | 1.6437 | 1550 | 0.3163 | | 0.2727 | 1.6967 | 1600 | 0.3158 | | 0.2673 | 1.7497 | 1650 | 0.3123 | | 0.276 | 1.8028 | 1700 | 0.3090 | | 0.217 | 1.8558 | 1750 | 0.3021 | | 0.2712 | 1.9088 | 1800 | 0.2950 | | 0.2175 | 1.9618 | 1850 | 0.2927 | | 0.1561 | 2.0148 | 1900 | 0.2911 | | 0.1557 | 2.0679 | 1950 | 0.2773 | | 0.1404 | 2.1209 | 2000 | 0.2725 | | 0.1386 | 2.1739 | 2050 | 0.2696 | | 0.1224 | 2.2269 | 2100 | 0.2780 | | 0.1535 | 2.2800 | 2150 | 0.2713 | | 0.1494 | 2.3330 | 2200 | 0.2704 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1