File size: 3,045 Bytes
0b7ed68
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad9e28
0b7ed68
 
 
 
1ad9e28
 
 
0b7ed68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad9e28
0b7ed68
 
 
 
1ad9e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7ed68
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb-200-distilled-600M_dyu-fra
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tanihaha/huggingface/runs/asz90rzl)
# nllb-200-distilled-600M_dyu-fra

This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0050
- Bleu: 10.2534
- Gen Len: 12.4147

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log        | 1.0   | 127  | 2.2376          | 7.0259  | 12.5207 |
| No log        | 2.0   | 254  | 2.1404          | 8.1151  | 12.2665 |
| No log        | 3.0   | 381  | 2.0926          | 8.5971  | 12.3487 |
| 2.3978        | 4.0   | 508  | 2.0610          | 9.0697  | 12.4276 |
| 2.3978        | 5.0   | 635  | 2.0368          | 9.1953  | 12.5058 |
| 2.3978        | 6.0   | 762  | 2.0260          | 9.6559  | 12.5785 |
| 2.3978        | 7.0   | 889  | 2.0141          | 9.9721  | 12.3861 |
| 1.9131        | 8.0   | 1016 | 2.0068          | 9.9515  | 12.5071 |
| 1.9131        | 9.0   | 1143 | 2.0036          | 10.1965 | 12.3855 |
| 1.9131        | 10.0  | 1270 | 2.0004          | 10.1496 | 12.5085 |
| 1.9131        | 11.0  | 1397 | 1.9989          | 10.203  | 12.6275 |
| 1.7208        | 12.0  | 1524 | 1.9997          | 10.3765 | 12.5459 |
| 1.7208        | 13.0  | 1651 | 1.9979          | 10.5581 | 12.4963 |
| 1.7208        | 14.0  | 1778 | 1.9963          | 10.4845 | 12.3494 |
| 1.7208        | 15.0  | 1905 | 2.0023          | 10.4471 | 12.4154 |
| 1.6069        | 16.0  | 2032 | 2.0019          | 10.3647 | 12.395  |
| 1.6069        | 17.0  | 2159 | 2.0022          | 10.3361 | 12.3474 |
| 1.6069        | 18.0  | 2286 | 2.0040          | 10.2938 | 12.3576 |
| 1.6069        | 19.0  | 2413 | 2.0053          | 10.2612 | 12.3868 |
| 1.5427        | 20.0  | 2540 | 2.0050          | 10.2534 | 12.4147 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1