wendys-llc commited on
Commit
6f4f7d0
·
verified ·
1 Parent(s): 6c47bfd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +31 -25
README.md CHANGED
@@ -6,24 +6,31 @@ tags:
6
  - pytorch
7
  datasets:
8
  - wendys-llc/chkbx
 
 
 
 
 
 
 
9
  ---
10
 
11
  # Checkbox Classifier
12
 
13
- Binary classifier for checkbox states (checked/unchecked).
14
 
15
- ## Usage with Transformers
16
 
17
  ```python
18
  from transformers import pipeline
 
19
 
20
  # Load pipeline
21
  classifier = pipeline("image-classification",
22
  model="wendys-llc/checkbox-classifier",
23
  trust_remote_code=True)
24
 
25
- # Predict
26
- from PIL import Image
27
  image = Image.open("checkbox.jpg")
28
  result = classifier(image)
29
  print(result)
@@ -31,30 +38,29 @@ print(result)
31
  # {'label': 'checked', 'score': 0.99},
32
  # {'label': 'unchecked', 'score': 0.01}
33
  # ]
 
 
 
 
34
  ```
35
 
36
- ## Direct Usage
37
 
38
- ```python
39
- from transformers import AutoModelForImageClassification, AutoImageProcessor
40
- import torch
41
- from PIL import Image
 
42
 
43
- model = AutoModelForImageClassification.from_pretrained(
44
- "wendys-llc/checkbox-classifier",
45
- trust_remote_code=True
46
- )
47
- processor = AutoImageProcessor.from_pretrained("wendys-llc/checkbox-classifier")
48
 
49
- image = Image.open("checkbox.jpg")
50
- inputs = processor(images=image, return_tensors="pt")
51
-
52
- with torch.no_grad():
53
- outputs = model(**inputs)
54
- logits = outputs.logits
55
- predicted_class = logits.argmax(-1).item()
56
-
57
- print(model.config.id2label[predicted_class])
58
- ```
59
 
60
- ## Accuracy: 97.1%
 
 
 
6
  - pytorch
7
  datasets:
8
  - wendys-llc/chkbx
9
+ widget:
10
+ - src: https://i.imgur.com/ExampleChecked.jpg
11
+ candidate_labels: unchecked, checked
12
+ example_title: Checked Box
13
+ - src: https://i.imgur.com/ExampleUnchecked.jpg
14
+ candidate_labels: unchecked, checked
15
+ example_title: Unchecked Box
16
  ---
17
 
18
  # Checkbox Classifier
19
 
20
+ Binary classifier for checkbox states (checked/unchecked). Trained on the [wendys-llc/chkbx](https://huggingface.co/datasets/wendys-llc/chkbx) dataset.
21
 
22
+ ## Usage
23
 
24
  ```python
25
  from transformers import pipeline
26
+ from PIL import Image
27
 
28
  # Load pipeline
29
  classifier = pipeline("image-classification",
30
  model="wendys-llc/checkbox-classifier",
31
  trust_remote_code=True)
32
 
33
+ # Classify an image
 
34
  image = Image.open("checkbox.jpg")
35
  result = classifier(image)
36
  print(result)
 
38
  # {'label': 'checked', 'score': 0.99},
39
  # {'label': 'unchecked', 'score': 0.01}
40
  # ]
41
+
42
+ # Get just the top prediction
43
+ top_result = classifier(image, top_k=1)
44
+ print(f"State: {top_result[0]['label']}")
45
  ```
46
 
47
+ ## Model Details
48
 
49
+ - **Architecture**: EfficientNetV2-S
50
+ - **Input Size**: 128x128 RGB images
51
+ - **Training**: Mixed precision on A100 GPU
52
+ - **Validation Accuracy**: 97.1%
53
+ - **License**: Apache 2.0
54
 
55
+ ## Intended Use
 
 
 
 
56
 
57
+ This model is designed to classify UI checkboxes in screenshots or interface images. It works best on:
58
+ - Clear, high-contrast checkbox images
59
+ - Standard UI checkboxes (not hand-drawn)
60
+ - Images where the checkbox is the main focus
61
+
62
+ ## Limitations
 
 
 
 
63
 
64
+ - May not work well on hand-drawn checkmarks
65
+ - Trained on UI checkboxes, not paper forms
66
+ - Best performance when checkbox is clearly visible and not too small