Upload model.py with huggingface_hub
Browse files
model.py
CHANGED
|
@@ -1,10 +1,6 @@
|
|
| 1 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
| 2 |
-
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights
|
| 5 |
-
from torchvision import transforms
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import numpy as np
|
| 8 |
|
| 9 |
class CheckboxConfig(PretrainedConfig):
|
| 10 |
model_type = "checkbox-classifier"
|
|
@@ -13,44 +9,6 @@ class CheckboxConfig(PretrainedConfig):
|
|
| 13 |
super().__init__(num_labels=num_labels, **kwargs)
|
| 14 |
self.dropout_rate = dropout_rate
|
| 15 |
|
| 16 |
-
class CheckboxImageProcessor(ImageProcessingMixin):
|
| 17 |
-
"""Simple image processor for checkbox classifier"""
|
| 18 |
-
|
| 19 |
-
def __init__(self, **kwargs):
|
| 20 |
-
super().__init__(**kwargs)
|
| 21 |
-
self.size = {"height": 128, "width": 128}
|
| 22 |
-
self.image_mean = [0.485, 0.456, 0.406]
|
| 23 |
-
self.image_std = [0.229, 0.224, 0.225]
|
| 24 |
-
|
| 25 |
-
self.transform = transforms.Compose([
|
| 26 |
-
transforms.Resize((self.size["height"], self.size["width"])),
|
| 27 |
-
transforms.ToTensor(),
|
| 28 |
-
transforms.Normalize(mean=self.image_mean, std=self.image_std)
|
| 29 |
-
])
|
| 30 |
-
|
| 31 |
-
def preprocess(self, images, **kwargs):
|
| 32 |
-
"""Preprocess images for model input"""
|
| 33 |
-
if not isinstance(images, list):
|
| 34 |
-
images = [images]
|
| 35 |
-
|
| 36 |
-
processed = []
|
| 37 |
-
for image in images:
|
| 38 |
-
if isinstance(image, str):
|
| 39 |
-
image = Image.open(image).convert('RGB')
|
| 40 |
-
elif isinstance(image, np.ndarray):
|
| 41 |
-
image = Image.fromarray(image).convert('RGB')
|
| 42 |
-
elif not isinstance(image, Image.Image):
|
| 43 |
-
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 44 |
-
|
| 45 |
-
processed.append(self.transform(image))
|
| 46 |
-
|
| 47 |
-
# Stack into batch
|
| 48 |
-
pixel_values = torch.stack(processed)
|
| 49 |
-
return {"pixel_values": pixel_values}
|
| 50 |
-
|
| 51 |
-
def __call__(self, images, **kwargs):
|
| 52 |
-
return self.preprocess(images, **kwargs)
|
| 53 |
-
|
| 54 |
class CheckboxClassifier(PreTrainedModel):
|
| 55 |
config_class = CheckboxConfig
|
| 56 |
|
|
@@ -58,7 +16,7 @@ class CheckboxClassifier(PreTrainedModel):
|
|
| 58 |
super().__init__(config)
|
| 59 |
self.num_labels = config.num_labels
|
| 60 |
|
| 61 |
-
self.backbone = efficientnet_v2_s(weights=
|
| 62 |
num_features = self.backbone.classifier[1].in_features
|
| 63 |
|
| 64 |
self.backbone.classifier = nn.Sequential(
|
|
@@ -74,15 +32,6 @@ class CheckboxClassifier(PreTrainedModel):
|
|
| 74 |
nn.Linear(256, config.num_labels)
|
| 75 |
)
|
| 76 |
|
| 77 |
-
def forward(self, pixel_values
|
| 78 |
outputs = self.backbone(pixel_values)
|
| 79 |
-
|
| 80 |
-
loss = None
|
| 81 |
-
if labels is not None:
|
| 82 |
-
loss_fct = nn.CrossEntropyLoss()
|
| 83 |
-
loss = loss_fct(outputs, labels)
|
| 84 |
-
|
| 85 |
-
return {
|
| 86 |
-
"loss": loss,
|
| 87 |
-
"logits": outputs,
|
| 88 |
-
}
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class CheckboxConfig(PretrainedConfig):
|
| 6 |
model_type = "checkbox-classifier"
|
|
|
|
| 9 |
super().__init__(num_labels=num_labels, **kwargs)
|
| 10 |
self.dropout_rate = dropout_rate
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
class CheckboxClassifier(PreTrainedModel):
|
| 13 |
config_class = CheckboxConfig
|
| 14 |
|
|
|
|
| 16 |
super().__init__(config)
|
| 17 |
self.num_labels = config.num_labels
|
| 18 |
|
| 19 |
+
self.backbone = efficientnet_v2_s(weights=EfficientNet_V2_S_Weights.IMAGENET1K_V1)
|
| 20 |
num_features = self.backbone.classifier[1].in_features
|
| 21 |
|
| 22 |
self.backbone.classifier = nn.Sequential(
|
|
|
|
| 32 |
nn.Linear(256, config.num_labels)
|
| 33 |
)
|
| 34 |
|
| 35 |
+
def forward(self, pixel_values):
|
| 36 |
outputs = self.backbone(pixel_values)
|
| 37 |
+
return {"logits": outputs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|