Update README.md
Browse files
README.md
CHANGED
|
@@ -2,59 +2,147 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
- image-classification
|
| 5 |
-
-
|
| 6 |
-
-
|
|
|
|
| 7 |
datasets:
|
| 8 |
- wendys-llc/chkbx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
# Checkbox Classifier
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
```python
|
| 18 |
from transformers import pipeline
|
|
|
|
| 19 |
|
| 20 |
-
# Load
|
| 21 |
-
classifier = pipeline("image-classification",
|
| 22 |
-
model="wendys-llc/checkbox-classifier",
|
| 23 |
-
trust_remote_code=True)
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
from PIL import Image
|
| 27 |
image = Image.open("checkbox.jpg")
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
```
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
```python
|
| 39 |
-
from transformers import
|
| 40 |
import torch
|
| 41 |
from PIL import Image
|
| 42 |
|
| 43 |
-
model
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
)
|
| 47 |
-
processor = AutoImageProcessor.from_pretrained("wendys-llc/checkbox-classifier")
|
| 48 |
|
|
|
|
| 49 |
image = Image.open("checkbox.jpg")
|
| 50 |
inputs = processor(images=image, return_tensors="pt")
|
| 51 |
|
|
|
|
| 52 |
with torch.no_grad():
|
| 53 |
outputs = model(**inputs)
|
| 54 |
logits = outputs.logits
|
| 55 |
-
predicted_class = logits.argmax(-1).item()
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
```
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
- image-classification
|
| 5 |
+
- computer-vision
|
| 6 |
+
- checkbox-detection
|
| 7 |
+
- efficientnet
|
| 8 |
datasets:
|
| 9 |
- wendys-llc/chkbx
|
| 10 |
+
metrics:
|
| 11 |
+
- accuracy
|
| 12 |
+
- f1
|
| 13 |
+
- precision
|
| 14 |
+
- recall
|
| 15 |
+
base_model: google/efficientnet-b0
|
| 16 |
+
model-index:
|
| 17 |
+
- name: checkbox-classifier-efficientnet
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: image-classification
|
| 21 |
+
name: Image Classification
|
| 22 |
+
dataset:
|
| 23 |
+
type: wendys-llc/chkbx
|
| 24 |
+
name: Checkbox Detection Dataset
|
| 25 |
+
split: validation
|
| 26 |
+
metrics:
|
| 27 |
+
- type: accuracy
|
| 28 |
+
value: 0.97
|
| 29 |
+
name: Validation Accuracy
|
| 30 |
+
library_name: transformers
|
| 31 |
+
pipeline_tag: image-classification
|
| 32 |
---
|
| 33 |
|
| 34 |
+
# Checkbox State Classifier - EfficientNet-B0
|
| 35 |
|
| 36 |
+
A fine-tuned EfficientNet-B0 model for binary classification of checkbox states (checked/unchecked). This model achieves ~95% accuracy on UI checkbox detection.
|
| 37 |
|
| 38 |
+
## Model Description
|
| 39 |
+
|
| 40 |
+
This model is fine-tuned from [google/efficientnet-b0](https://huggingface.co/google/efficientnet-b0) on the [wendys-llc/chkbx](https://huggingface.co/datasets/wendys-llc/chkbx) dataset. It's designed to classify UI checkboxes in screenshots and interface images.
|
| 41 |
+
|
| 42 |
+
### Key Features
|
| 43 |
+
- **No `trust_remote_code` required** - Uses native transformers support
|
| 44 |
+
- **Fast inference** - EfficientNet-B0 is optimized for speed
|
| 45 |
+
- **High accuracy** - ~95% on validation set
|
| 46 |
+
- **Simple API** - Works with transformers pipeline out of the box
|
| 47 |
+
|
| 48 |
+
## Usage
|
| 49 |
+
|
| 50 |
+
### Quick Start with Pipeline (Recommended)
|
| 51 |
|
| 52 |
```python
|
| 53 |
from transformers import pipeline
|
| 54 |
+
from PIL import Image
|
| 55 |
|
| 56 |
+
# Load the model
|
| 57 |
+
classifier = pipeline("image-classification", model="wendys-llc/checkbox-classifier-efficientnet")
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Classify an image
|
|
|
|
| 60 |
image = Image.open("checkbox.jpg")
|
| 61 |
+
results = classifier(image)
|
| 62 |
+
|
| 63 |
+
# Print results
|
| 64 |
+
for result in results:
|
| 65 |
+
print(f"{result['label']}: {result['score']:.2%}")
|
| 66 |
+
|
| 67 |
+
# Get just the top prediction
|
| 68 |
+
top_result = classifier(image, top_k=1)[0]
|
| 69 |
+
print(f"Checkbox is: {top_result['label']} (confidence: {top_result['score']:.2%})")
|
| 70 |
```
|
| 71 |
|
| 72 |
+
### Using AutoModel and AutoImageProcessor
|
| 73 |
|
| 74 |
```python
|
| 75 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 76 |
import torch
|
| 77 |
from PIL import Image
|
| 78 |
|
| 79 |
+
# Load model and processor
|
| 80 |
+
processor = AutoImageProcessor.from_pretrained("wendys-llc/checkbox-classifier-efficientnet")
|
| 81 |
+
model = AutoModelForImageClassification.from_pretrained("wendys-llc/checkbox-classifier-efficientnet")
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# Prepare image
|
| 84 |
image = Image.open("checkbox.jpg")
|
| 85 |
inputs = processor(images=image, return_tensors="pt")
|
| 86 |
|
| 87 |
+
# Get prediction
|
| 88 |
with torch.no_grad():
|
| 89 |
outputs = model(**inputs)
|
| 90 |
logits = outputs.logits
|
|
|
|
| 91 |
|
| 92 |
+
# Get predicted class
|
| 93 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 94 |
+
predicted_label = model.config.id2label[predicted_class_idx]
|
| 95 |
+
|
| 96 |
+
# Get confidence scores
|
| 97 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 98 |
+
confidence = probabilities.max().item()
|
| 99 |
+
|
| 100 |
+
print(f"Prediction: {predicted_label} (confidence: {confidence:.2%})")
|
| 101 |
```
|
| 102 |
|
| 103 |
+
### Batch Processing
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from transformers import pipeline
|
| 107 |
+
from PIL import Image
|
| 108 |
+
|
| 109 |
+
classifier = pipeline("image-classification", model="wendys-llc/checkbox-classifier-efficientnet")
|
| 110 |
+
|
| 111 |
+
# Process multiple images
|
| 112 |
+
images = [Image.open(f"checkbox_{i}.jpg") for i in range(1, 4)]
|
| 113 |
+
results = classifier(images)
|
| 114 |
+
|
| 115 |
+
for i, result in enumerate(results):
|
| 116 |
+
top_pred = result[0] # Get top prediction
|
| 117 |
+
print(f"Image {i+1}: {top_pred['label']} ({top_pred['score']:.2%})")
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
## Model Details
|
| 121 |
+
|
| 122 |
+
### Architecture
|
| 123 |
+
- **Base Model**: google/efficientnet-b0
|
| 124 |
+
- **Model Type**: EfficientNet for Image Classification
|
| 125 |
+
- **Number of Labels**: 2 (checked, unchecked)
|
| 126 |
+
- **Input Size**: 224x224 RGB images
|
| 127 |
+
- **Framework**: PyTorch via Transformers
|
| 128 |
+
|
| 129 |
+
### Training Details
|
| 130 |
+
- **Dataset**: [wendys-llc/chkbx](https://huggingface.co/datasets/wendys-llc/chkbx)
|
| 131 |
+
- ~4,800 training samples
|
| 132 |
+
- ~1,200 validation samples
|
| 133 |
+
- **Training Configuration**:
|
| 134 |
+
- Epochs: 15 (with early stopping)
|
| 135 |
+
- Batch Size: 64 (on A100)
|
| 136 |
+
- Learning Rate: Default AdamW
|
| 137 |
+
- Mixed Precision: FP16
|
| 138 |
+
- Hardware: NVIDIA A100 GPU
|
| 139 |
+
|
| 140 |
+
## Acknowledgments
|
| 141 |
+
|
| 142 |
+
- Base model: [google/efficientnet-b0](https://huggingface.co/google/efficientnet-b0)
|
| 143 |
+
- Dataset: [wendys-llc/chkbx](https://huggingface.co/datasets/wendys-llc/chkbx)
|
| 144 |
+
- Framework: [HuggingFace Transformers](https://github.com/huggingface/transformers)
|
| 145 |
+
|
| 146 |
+
## License
|
| 147 |
+
|
| 148 |
+
This model is licensed under the Apache 2.0 License. See the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file for details.
|