Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -2,107 +2,59 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- image-classification
|
5 |
-
-
|
6 |
-
- computer-vision
|
7 |
- pytorch
|
8 |
datasets:
|
9 |
- wendys-llc/chkbx
|
10 |
-
metrics:
|
11 |
-
- accuracy
|
12 |
-
library_name: pytorch
|
13 |
---
|
14 |
|
15 |
-
# Checkbox
|
16 |
|
17 |
-
|
18 |
-
unchecked.
|
19 |
|
20 |
-
##
|
21 |
-
- **Architecture**: EfficientNetV2-S (PyTorch)
|
22 |
-
- **Input Size**: 128x128 RGB images
|
23 |
-
- **Output**: Binary classification (unchecked: 0, checked: 1)
|
24 |
-
- **Validation Accuracy**: 97.1%
|
25 |
-
- **Training**: Mixed precision on A100 GPU
|
26 |
-
|
27 |
-
## Quick Start
|
28 |
|
29 |
```python
|
30 |
-
import
|
31 |
-
from PIL import Image
|
32 |
-
from torchvision import transforms
|
33 |
-
from huggingface_hub import hf_hub_download
|
34 |
-
import torch.nn as nn
|
35 |
-
from torchvision.models import efficientnet_v2_s,
|
36 |
-
EfficientNet_V2_S_Weights
|
37 |
-
|
38 |
-
# Define model architecture
|
39 |
-
class EfficientNetV2Classifier(nn.Module):
|
40 |
-
def __init__(self, num_classes=2, dropout_rate=0.3):
|
41 |
-
super().__init__()
|
42 |
-
self.backbone = efficientnet_v2_s(weights=EfficientNet
|
43 |
-
_V2_S_Weights.IMAGENET1K_V1)
|
44 |
-
num_features = self.backbone.classifier[1].in_features
|
45 |
-
self.backbone.classifier = nn.Sequential(
|
46 |
-
nn.Dropout(dropout_rate),
|
47 |
-
nn.Linear(num_features, 512),
|
48 |
-
nn.SiLU(inplace=True),
|
49 |
-
nn.BatchNorm1d(512),
|
50 |
-
nn.Dropout(dropout_rate),
|
51 |
-
nn.Linear(512, 256),
|
52 |
-
nn.SiLU(inplace=True),
|
53 |
-
nn.BatchNorm1d(256),
|
54 |
-
nn.Dropout(dropout_rate/2),
|
55 |
-
nn.Linear(256, num_classes)
|
56 |
-
)
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
return self.backbone(x)
|
60 |
-
|
61 |
-
# Download and load model
|
62 |
-
model_path = hf_hub_download(repo_id="wendys-llc/checkbox-classifier",
|
63 |
-
filename="checkbox_classifier.pth")
|
64 |
-
checkpoint = torch.load(model_path, map_location='cpu')
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
model
|
69 |
-
|
70 |
-
# Image preprocessing
|
71 |
-
transform = transforms.Compose([
|
72 |
-
transforms.Resize((128, 128)),
|
73 |
-
transforms.ToTensor(),
|
74 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
75 |
-
std=[0.229, 0.224, 0.225])
|
76 |
-
])
|
77 |
|
78 |
# Predict
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
confidence = probabilities[0][predicted].item()
|
89 |
-
|
90 |
-
labels = {0: "unchecked", 1: "checked"}
|
91 |
-
return labels[predicted], confidence
|
92 |
|
93 |
-
|
94 |
-
result, conf = predict("checkbox.jpg")
|
95 |
-
print(f"Result: {result} (confidence: {conf:.1%})")
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
hand-drawn checkmarks
|
106 |
-
- Best performance on clear, high-contrast checkbox images
|
107 |
-
- Input images are resized to 128x128, very small checkboxes
|
108 |
-
may lose detail
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- image-classification
|
5 |
+
- transformers
|
|
|
6 |
- pytorch
|
7 |
datasets:
|
8 |
- wendys-llc/chkbx
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
# Checkbox Classifier
|
12 |
|
13 |
+
Binary classifier for checkbox states (checked/unchecked).
|
|
|
14 |
|
15 |
+
## Usage with Transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
```python
|
18 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Load pipeline
|
21 |
+
classifier = pipeline("image-classification",
|
22 |
+
model="wendys-llc/checkbox-classifier",
|
23 |
+
trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Predict
|
26 |
+
from PIL import Image
|
27 |
+
image = Image.open("checkbox.jpg")
|
28 |
+
result = classifier(image)
|
29 |
+
print(result)
|
30 |
+
# [
|
31 |
+
# {'label': 'checked', 'score': 0.99},
|
32 |
+
# {'label': 'unchecked', 'score': 0.01}
|
33 |
+
# ]
|
34 |
+
```
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
## Direct Usage
|
|
|
|
|
37 |
|
38 |
+
```python
|
39 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
40 |
+
import torch
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
model = AutoModelForImageClassification.from_pretrained(
|
44 |
+
"wendys-llc/checkbox-classifier",
|
45 |
+
trust_remote_code=True
|
46 |
+
)
|
47 |
+
processor = AutoImageProcessor.from_pretrained("wendys-llc/checkbox-classifier")
|
48 |
|
49 |
+
image = Image.open("checkbox.jpg")
|
50 |
+
inputs = processor(images=image, return_tensors="pt")
|
51 |
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
logits = outputs.logits
|
55 |
+
predicted_class = logits.argmax(-1).item()
|
56 |
+
|
57 |
+
print(model.config.id2label[predicted_class])
|
58 |
+
```
|
59 |
|
60 |
+
## Accuracy: 97.1%
|
|
|
|
|
|
|
|